Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: AI and the Web
Downloads:
Abstract:
User feedback can be an effective indicator to the success of the human-robot conversation. However, to avoid to interrupt the online real-time conversation process, explicit feedback is usually gained at the end of a conversation. Alternatively, users' responses usually contain their implicit feedback, such as stance, sentiment, emotion, etc., towards the conversation content or the interlocutors. Therefore, exploring the implicit feedback is a natural way to optimize the conversation generation process. In this paper, we propose a novel reward function which explores the implicit feedback to optimize the future reward of a reinforcement learning based neural conversation model. A simulation strategy is applied to explore the state-action space in training and test. Experimental results show that the proposed approach outperforms the Seq2Seq model and the state-of-the-art reinforcement learning model for conversation generation on automatic and human evaluations on the OpenSubtitles and Twitter datasets.
DOI:
10.1609/aaai.v32i1.11253
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.