Proceedings:
Proceedings of the Twentieth International Conference on Machine Learning
Volume
Issue:
Proceedings of the Twentieth International Conference on Machine Learning
Track:
Contents
Downloads:
Abstract:
This paper is concerned with the question of how to online combine an ensemble of active learners so as to expedite the learning progress during a pool-based active learning session. We develop a powerful active learning master algorithm, based a known competitive algorithm for the multi-armed bandit problem and a novel semi-supervised performance evaluation statistic. Taking an ensemble containing two of the best known active learning algorithms and a new algorithm, the resulting new active learning master algorithm is empirically shown to consistently perform almost as well as and sometimes outperform the best algorithm in the ensemble on a range of classification problems.
ICML
Proceedings of the Twentieth International Conference on Machine Learning