Proceedings:
Search Techniques for Problem Solving Under Uncertainty and Incomplete Information
Volume
Issue:
Search Techniques for Problem Solving Under Uncertainty and Incomplete Information
Track:
Contents
Downloads:
Abstract:
Markov Decision Processes (MDPs) have been studied extensively in the context of decision making under uncertainty. This paper presents a new methodology for solving MDPs, based on genetic algorithms. In particular, the importance of discounting in the new framework is dealt with and applied to a model problem. Comparison with the policy iteration algorithm from dynamic programming reveals the advantages and disadvantages of the proposed method.
Spring
Search Techniques for Problem Solving Under Uncertainty and Incomplete Information