Published:
2015-11-12
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 3
Volume
Issue:
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
Track:
Full Papers
Downloads:
Abstract:
We report on a series of behavioral experiments in human computation on three different tasks over networks: graph coloring, community detection (or graph clustering), and competitive contagion. While these tasks share similar action spaces and interfaces, they capture a diversity of computational challenges: graph coloring is a search problem, clustering is an optimization problem, and competitive contagion is a game-theoretic problem. In contrast with most of the prior literature on human-subject experiments in networks, in which collectives of subjects are embedded "in" the network, and have only local information and interactions, here individual subjects have a global (or "over") view and must solve "whole network" problems alone. Our primary findings are that subject performance is impressive across all three problem types; that subjects find diverse and novel strategies for solving each task; and that collective performance can often be strongly correlated with known algorithms.
DOI:
10.1609/hcomp.v3i1.13223
HCOMP
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-740-7