Published:
2015-11-12
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 3
Volume
Issue:
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
Track:
Full Papers
Downloads:
Abstract:
We propose novel algorithms for the problem of crowdsourcing binary labels. Such binary labeling tasks are very common in crowdsourcing platforms, for instance, to judge the appropriateness of web content or to flag vandalism. We propose two unsupervised algorithms: one simple to implement albeit derived heuristically, and one based on iterated bayesian parameter estimation of user reputation models. We provide mathematical insight into the benefits of the proposed algorithms over existing approaches, and we confirm these insights by showing that both algorithms offer improved performance on many occasions across both synthetic and real-world datasets obtained via Amazon Mechanical Turk.
DOI:
10.1609/hcomp.v3i1.13240
HCOMP
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-740-7