Published:
2013-11-10
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 1
Volume
Issue:
Vol. 1 (2013): First AAAI Conference on Human Computation and Crowdsourcing
Track:
Demonstrations
Downloads:
Abstract:
We propose a new method for the large-scale collection and analysis of drawings by using a mobile game specifically designed to collect such data. Analyzing this crowdsourced drawing database, we build a spatially varying model of artistic consensus at the stroke level. We then present a surprisingly simple stroke- correction method which uses our artistic consensus model to improve strokes in real-time. Importantly, our auto-corrections run interactively and appear nearly in- visible to the user while seamlessly preserving artistic intent. Closing the loop, the game itself serves as a plat- form for large-scale evaluation of the effectiveness of our stroke correction algorithm.
DOI:
10.1609/hcomp.v1i1.13058
HCOMP
Vol. 1 (2013): First AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-607-3