Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Demonstration Track
Downloads:
Abstract:
This demo paper presents a design and implementation of a system AnomalyKiTS for detecting anomalies from time series data for the purpose of offering a broad range of algorithms to the end user, with special focus on unsupervised/semi-supervised learning. Given an input time series, AnomalyKiTS provides four categories of model building capabilities followed by an enrichment module that helps to label anomaly. AnomalyKiTS also supports a wide range of execution engines to meet the diverse need of anomaly workloads such as Serveless for CPU intensive work, GPU for deep-learning model training, etc.
DOI:
10.1609/aaai.v36i11.21730
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36