Proceedings:
No. 2: AAAI-22 Technical Tracks 2
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Computer Vision II
Downloads:
Abstract:
We introduce Perceiving Stroke-Semantic Context (PerSec), a new approach to self-supervised representation learning tailored for Scene Text Recognition (STR) task. Considering scene text images carry both visual and semantic properties, we equip our PerSec with dual context perceivers which can contrast and learn latent representations from low-level stroke and high-level semantic contextual spaces simultaneously via hierarchical contrastive learning on unlabeled text image data. Experiments in un- and semi-supervised learning settings on STR benchmarks demonstrate our proposed framework can yield a more robust representation for both CTC-based and attention-based decoders than other contrastive learning methods. To fully investigate the potential of our method, we also collect a dataset of 100 million unlabeled text images, named UTI-100M, covering 5 scenes and 4 languages. By leveraging hundred-million-level unlabeled data, our PerSec shows significant performance improvement when fine-tuning the learned representation on the labeled data. Furthermore, we observe that the representation learned by PerSec presents great generalization, especially under few labeled data scenes.
DOI:
10.1609/aaai.v36i2.20062
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36