Proceedings:
No. 2: AAAI-22 Technical Tracks 2
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Computer Vision II
Downloads:
Abstract:
This paper describes an energy-based learning method that predicts the activities of multiple agents simultaneously. It aims to forecast both upcoming actions and paths of all agents in a scene based on their past activities, which can be jointly formulated by a probabilistic model over time. Learning this model is challenging because: 1) it has a large number of time-dependent variables that must scale with the forecast horizon and the number of agents; 2) distribution functions have to contain multiple modes in order to capture the spatio-temporal complexities of each agent's activities. To address these challenges, we put forth a novel Energy-based Learning approach for Multi-Agent activity forecasting (ELMA) to estimate this complex model via maximum log-likelihood estimation. Specifically, by sampling from a sequence of factorized marginalized multi-model distributions, ELMA generates most possible future actions efficiently. Moreover, by graph-based representations, ELMA also explicitly resolves the spatio-temporal dependencies of all agents' activities in a single pass. Our experiments on two large-scale datasets prove that ELMA outperforms recent leading studies by an obvious margin.
DOI:
10.1609/aaai.v36i2.20038
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36