Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Demonstration Track
Downloads:
Abstract:
In this paper, we introduce ACAT-G, an interactive dialogue learning framework that incorporates constant human feedback into fine-tuning language models in order to assist conditioned dialog generation. The system takes in a limited amount of input from a human and generates personalized response corresponding to the context of the conversation within natural dialog time-frame. By combining inspirations from online learning, reinforcement learning, and large scale language models, we expect this project to provide a foundation for human-in-the-loop conditional dialog generation tasks.
DOI:
10.1609/aaai.v35i18.18019
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35