Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Demonstration Track
Downloads:
Abstract:
The rapid development and wide utilization of object detection techniques have aroused requirements for both accuracy and speed of object detectors. In this work, we propose a compression-compilation co-design framework to achieve real-time YOLOv4 inference on mobile devices. We propose a novel fine-grained structured pruning, which maintain high accuracy while achieving high hardware parallelism. Our pruned YOLOv4 achieves 48.9 mAP and 17 FPS inference speed on an off-the-shelf Samsung Galaxy S20 smartphone, which is 5.5x faster than the original state-of-the-art detector YOLOv4.
DOI:
10.1609/aaai.v35i18.17992
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35