Proceedings:
No. 18: AAAI-21 Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
We extend the popular transformer architecture to a multi-modal model, processing both visual and textual inputs. We propose a new attention mechanism on Transformer-based architecture for the joint vision and language understanding tasks. Our model fuses multi-level comprehension between images and texts in a weighted manner, which could better curve the internal relationships. Experiments on benchmark VQA dataset CLEVR demonstrate the effectiveness of the proposed attention mechanism. We also observe the improvements in sample efficiency of reinforcement learning through the experiments on grounded language understanding tasks of BabyAI platform.
DOI:
10.1609/aaai.v35i18.17891
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35