Proceedings:
No. 7: AAAI-21 Technical Tracks 7
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Humans and AI
Downloads:
Abstract:
Recent progress on physics-based character animation has shown impressive breakthroughs on human motion synthesis, through imitating motion capture data via deep reinforcement learning. However, results have mostly been demonstrated on imitating a single distinct motion pattern, and do not generalize to interactive tasks that require flexible motion patterns due to varying human-object spatial configurations. To bridge this gap, we focus on one class of interactive tasks---sitting onto a chair. We propose a hierarchical reinforcement learning framework which relies on a collection of subtask controllers trained to imitate simple, reusable mocap motions, and a meta controller trained to execute the subtasks properly to complete the main task. We experimentally demonstrate the strength of our approach over different non-hierarchical and hierarchical baselines. We also show that our approach can be applied to motion prediction given an image input. A supplementary video can be found at https://youtu.be/3CeN0OGz2cA.
DOI:
10.1609/aaai.v35i7.16736
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35