Proceedings:
No. 1: AAAI-21 Technical Tracks 1
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Application Domains
Downloads:
Abstract:
Search-based systems have shown to be effective for planning in zero-sum games. However, search-based approaches have important disadvantages. First, the decisions of search algorithms are mostly non-interpretable, which is problematic in domains where predictability and trust are desired such as commercial games. Second, the computational complexity of search-based algorithms might limit their applicability, especially in contexts where resources are shared among other tasks such as graphic rendering. In this work we introduce a system for synthesizing programmatic strategies for a real-time strategy (RTS) game. In contrast with search algorithms, programmatic strategies are more amenable to explanations and tend to be efficient, once the program is synthesized. Our system uses a novel algorithm for simplifying domain-specific languages (DSLs) and a local search algorithm that synthesizes programs with self play. We performed a user study where we enlisted four professional programmers to develop programmatic strategies for mRTS, a minimalist RTS game. Our results show that the programs synthesized by our approach can outperform search algorithms and be competitive with programs written by the programmers.
DOI:
10.1609/aaai.v35i1.16114
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35