Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Most of models for machine reading comprehension (MRC) usually focus on recurrent neural networks (RNNs) and attention mechanism, though convolutional neural networks (CNNs) are also involved for time efficiency. However, little attention has been paid to leverage CNNs and RNNs in MRC. For a deeper understanding, humans sometimes need local information for short phrases, sometimes need global context for long passages. In this paper, we propose a novel architecture, i.e., Rception, to capture and leverage both local deep information and global wide context. It fuses different kinds of networks and hyper-parameters horizontally rather than simply stacking them layer by layer vertically. Experiments on the Stanford Question Answering Dataset (SQuAD) show that our proposed architecture achieves good performance.
DOI:
10.1609/aaai.v34i10.7266
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved