Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 09: Issue 9: EAAI-20 / AAAI Special Programs
Track:
Demonstration Track
Downloads:
Abstract:
Model combination, often regarded as a key sub-field of ensemble learning, has been widely used in both academic research and industry applications. To facilitate this process, we propose and implement an easy-to-use Python toolkit, combo, to aggregate models and scores under various scenarios, including classification, clustering, and anomaly detection. In a nutshell, combo provides a unified and consistent way to combine both raw and pretrained models from popular machine learning libraries, e.g., scikit-learn, XGBoost, and LightGBM. With accessibility and robustness in mind, combo is designed with detailed documentation, interactive examples, continuous integration, code coverage, and maintainability check; it can be installed easily through Python Package Index (PyPI) or {https://github.com/yzhao062/combo}.
DOI:
10.1609/aaai.v34i09.7111
AAAI
Vol. 34 No. 09: Issue 9: EAAI-20 / AAAI Special Programs
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved