Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
In this paper, we present a new unsupervised and unified densely connected network for different types of image fusion tasks, termed as FusionDN. In our method, the densely connected network is trained to generate the fused image conditioned on source images. Meanwhile, a weight block is applied to obtain two data-driven weights as the retention degrees of features in different source images, which are the measurement of the quality and the amount of information in them. Losses of similarities based on these weights are applied for unsupervised learning. In addition, we obtain a single model applicable to multiple fusion tasks by applying elastic weight consolidation to avoid forgetting what has been learned from previous tasks when training multiple tasks sequentially, rather than train individual models for every fusion task or jointly train tasks roughly. Qualitative and quantitative results demonstrate the advantages of FusionDN compared with state-of-the-art methods in different fusion tasks.
DOI:
10.1609/aaai.v34i07.6936
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved