Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Recently, neural style transfer has drawn many attentions and significant progresses have been made, especially for image style transfer. However, flexible and consistent style transfer for videos remains a challenging problem. Existing training strategies, either using a significant amount of video data with optical flows or introducing single-frame regularizers, have limited performance on real videos. In this paper, we propose a novel interpretation of temporal consistency, based on which we analyze the drawbacks of existing training strategies; and then derive a new compound regularization. Experimental results show that the proposed regularization can better balance the spatial and temporal performance, which supports our modeling. Combining with the new cost formula, we design a zero-shot video style transfer framework. Moreover, for better feature migration, we introduce a new module to dynamically adjust inter-channel distributions. Quantitative and qualitative results demonstrate the superiority of our method over other state-of-the-art style transfer methods. Our project is publicly available at: https://daooshee.github.io/CompoundVST/.
DOI:
10.1609/aaai.v34i07.6905
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved