Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Generating natural and accurate descriptions in image captioning has always been a challenge. In this paper, we propose a novel recall mechanism to imitate the way human conduct captioning. There are three parts in our recall mechanism : recall unit, semantic guide (SG) and recalled-word slot (RWS). Recall unit is a text-retrieval module designed to retrieve recalled words for images. SG and RWS are designed for the best use of recalled words. SG branch can generate a recalled context, which can guide the process of generating caption. RWS branch is responsible for copying recalled words to the caption. Inspired by pointing mechanism in text summarization, we adopt a soft switch to balance the generated-word probabilities between SG and RWS. In the CIDEr optimization step, we also introduce an individual recalled-word reward (WR) to boost training. Our proposed methods (SG+RWS+WR) achieve BLEU-4 / CIDEr / SPICE scores of 36.6 / 116.9 / 21.3 with cross-entropy loss and 38.7 / 129.1 / 22.4 with CIDEr optimization on MSCOCO Karpathy test split, which surpass the results of other state-of-the-art methods.
DOI:
10.1609/aaai.v34i07.6898
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved