Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
To address the annotation scarcity issue in some cases of semantic segmentation, there have been a few attempts to develop the segmentation model in the few-shot learning paradigm. However, most existing methods only focus on the traditional 1-way segmentation setting (i.e., one image only contains a single object). This is far away from practical semantic segmentation tasks where the K-way setting (K > 1) is usually required by performing the accurate multi-object segmentation. To deal with this issue, we formulate the few-shot semantic segmentation task as a learning-based pixel classification problem, and propose a novel framework called MetaSegNet based on meta-learning. In MetaSegNet, an architecture of embedding module consisting of the global and local feature branches is developed to extract the appropriate meta-knowledge for the few-shot segmentation. Moreover, we incorporate a linear model into MetaSegNet as a base learner to directly predict the label of each pixel for the multi-object segmentation. Furthermore, our MetaSegNet can be trained by the episodic training mechanism in an end-to-end manner from scratch. Experiments on two popular semantic segmentation datasets, i.e., PASCAL VOC and COCO, reveal the effectiveness of the proposed MetaSegNet in the K-way few-shot semantic segmentation task.
DOI:
10.1609/aaai.v34i07.6887
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved