Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
We present a simple and effective image super-resolution algorithm that imposes an image formation constraint on the deep neural networks via pixel substitution. The proposed algorithm first uses a deep neural network to estimate intermediate high-resolution images, blurs the intermediate images using known blur kernels, and then substitutes values of the pixels at the un-decimated positions with those of the corresponding pixels from the low-resolution images. The output of the pixel substitution process strictly satisfies the image formation model and is further refined by the same deep neural network in a cascaded manner. The proposed framework is trained in an end-to-end fashion and can work with existing feed-forward deep neural networks for super-resolution and converges fast in practice. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods.
DOI:
10.1609/aaai.v34i07.6853
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved