Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
This paper presents an end-to-end 3D convolutional network named attention-based multi-modal fusion network (AMFNet) for the semantic scene completion (SSC) task of inferring the occupancy and semantic labels of a volumetric 3D scene from single-view RGB-D images. Compared with previous methods which use only the semantic features extracted from RGB-D images, the proposed AMFNet learns to perform effective 3D scene completion and semantic segmentation simultaneously via leveraging the experience of inferring 2D semantic segmentation from RGB-D images as well as the reliable depth cues in spatial dimension. It is achieved by employing a multi-modal fusion architecture boosted from 2D semantic segmentation and a 3D semantic completion network empowered by residual attention blocks. We validate our method on both the synthetic SUNCG-RGBD dataset and the real NYUv2 dataset and the results show that our method respectively achieves the gains of 2.5% and 2.6% on the synthetic SUNCG-RGBD dataset and the real NYUv2 dataset against the state-of-the-art method.
DOI:
10.1609/aaai.v34i07.6803
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved