Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Person re-identification (Re-ID) across multiple datasets is a challenging task due to two main reasons: the presence of large cross-dataset distinctions and the absence of annotated target instances. To address these two issues, this paper proposes a domain adaptive attention learning approach to reliably transfer discriminative representation from the labeled source domain to the unlabeled target domain. In this approach, a domain adaptive attention model is learned to separate the feature map into domain-shared part and domain-specific part. In this manner, the domain-shared part is used to capture transferable cues that can compensate cross-dataset distinctions and give positive contributions to the target task, while the domain-specific part aims to model the noisy information to avoid the negative transfer caused by domain diversity. A soft label loss is further employed to take full use of unlabeled target data by estimating pseudo labels. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 benchmarks demonstrate the proposed approach outperforms the state-of-the-arts.
DOI:
10.1609/aaai.v34i07.6762
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved