Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Spatiotemporal information is essential for video salient object detection (VSOD) due to the highly attractive object motion for human's attention. Previous VSOD methods usually use Long Short-Term Memory (LSTM) or 3D ConvNet (C3D), which can only encode motion information through step-by-step propagation in the temporal domain. Recently, the non-local mechanism is proposed to capture long-range dependencies directly. However, it is not straightforward to apply the non-local mechanism into VSOD, because i) it fails to capture motion cues and tends to learn motion-independent global contexts; ii) its computation and memory costs are prohibitive for video dense prediction tasks such as VSOD. To address the above problems, we design a Constrained Self-Attention (CSA) operation to capture motion cues, based on the prior that objects always move in a continuous trajectory. We group a set of CSA operations in Pyramid structures (PCSA) to capture objects at various scales and speeds. Extensive experimental results demonstrate that our method outperforms previous state-of-the-art methods in both accuracy and speed (110 FPS on a single Titan Xp) on five challenge datasets. Our code is available at https://github.com/guyuchao/PyramidCSA.
DOI:
10.1609/aaai.v34i07.6718
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved