Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
Track:
AAAI Technical Track: Reasoning under Uncertainty
Downloads:
Abstract:
Causal effect identification is one of the most prominent and well-understood problems in causal inference. Despite the generality and power of the results developed so far, there are still challenges in their applicability to practical settings, arguably due to the finitude of the samples. Simply put, there is a gap between causal effect identification and estimation. One popular setting in which sample-efficient estimators from finite samples exist is when the celebrated back-door condition holds. In this paper, we extend weighting-based methods developed for the back-door case to more general settings, and develop novel machinery for estimating causal effects using the weighting-based method as a building block. We derive graphical criteria under which causal effects can be estimated using this new machinery and demonstrate the effectiveness of the proposed method through simulation studies.
DOI:
10.1609/aaai.v34i06.6579
AAAI
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved