Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
Track:
AAAI Technical Track: Reasoning under Uncertainty
Downloads:
Abstract:
In this work, we develop a new approach to generative density estimation for exchangeable, non-i.i.d. data. The proposed framework, FlowScan, combines invertible flow transformations with a sorted scan to flexibly model the data while preserving exchangeability. Unlike most existing methods, FlowScan exploits the intradependencies within sets to learn both global and local structure. FlowScan represents the first approach that is able to apply sequential methods to exchangeable density estimation without resorting to averaging over all possible permutations. We achieve new state-of-the-art performance on point cloud and image set modeling.
DOI:
10.1609/aaai.v34i06.6562
AAAI
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved