Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
We investigate the task of constraining NMT with pre-specified translations, which has practical significance for a number of research and industrial applications. Existing works impose pre-specified translations as lexical constraints during decoding, which are based on word alignments derived from target-to-source attention weights. However, multiple recent studies have found that word alignment derived from generic attention heads in the Transformer is unreliable. We address this problem by introducing a dedicated head in the multi-head Transformer architecture to capture external supervision signals. Results on five language pairs show that our method is highly effective in constraining NMT with pre-specified translations, consistently outperforming previous methods in translation quality.
DOI:
10.1609/aaai.v34i05.6418
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved