Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
We study the problem of non-factoid QA on instructional videos. Existing work focuses either on visual or textual modality of video content, to find matching answers to the question. However, neither is flexible enough for our problem setting of non-factoid answers with varying lengths. Motivated by this, we propose a two-stage model: (a) multimodal segmentation of video into span candidates and (b) length-adaptive ranking of the candidates to the question. First, for segmentation, we propose Segmenter for generating span candidates of diverse length, considering both textual and visual modality. Second, for ranking, we propose Ranker to score the candidates, dynamically combining the two models with complementary strength for both short and long spans respectively. Experimental result demonstrates that our model achieves state-of-the-art performance.
DOI:
10.1609/aaai.v34i05.6327
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved