Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Question answering (QA) based on machine reading comprehension has been a recent surge in popularity, yet most work has focused on extractive methods. We instead address a more challenging QA problem of generating a well-formed answer by reading and summarizing the paragraph for a given question.For the generative QA task, we introduce a new neural architecture, LatentQA, in which a novel stochastic selector network composes a well-formed answer with words selected from the question, the paragraph and the global vocabulary, based on a sequence of discrete latent variables. Bayesian inference for the latent variables is performed to train the LatentQA model. The experiments on public datasets of natural answer generation confirm the effectiveness of LatentQA in generating high-quality well-formed answers.
DOI:
10.1609/aaai.v34i05.6238
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved