Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Regularization plays an important role in generalization of deep learning. In this paper, we study the generalization power of an unbiased regularizor for training algorithms in deep learning. We focus on training methods called Locally Regularized Stochastic Gradient Descent (LRSGD). An LRSGD leverages a proximal type penalty in gradient descent steps to regularize SGD in training. We show that by carefully choosing relevant parameters, LRSGD generalizes better than SGD. Our thorough theoretical analysis is supported by experimental evidence. It advances our theoretical understanding of deep learning and provides new perspectives on designing training algorithms. The code is available at https://github.com/huiqu18/LRSGD.
DOI:
10.1609/aaai.v34i04.6167
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved