Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Developing classification methods with high accuracy that also avoid unfair treatment of different groups has become increasingly important for data-driven decision making in social applications. Many existing methods enforce fairness constraints on a selected classifier (e.g., logistic regression) by directly forming constrained optimizations. We instead re-derive a new classifier from the first principles of distributional robustness that incorporates fairness criteria into a worst-case logarithmic loss minimization. This construction takes the form of a minimax game and produces a parametric exponential family conditional distribution that resembles truncated logistic regression. We present the theoretical benefits of our approach in terms of its convexity and asymptotic convergence. We then demonstrate the practical advantages of our approach on three benchmark fairness datasets.
DOI:
10.1609/aaai.v34i04.6002
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved