Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 01: AAAI-20 Technical Tracks 1
Track:
AAAI Technical Track: Applications
Downloads:
Abstract:
The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can improve parking efficiency, help urban planning, and ultimately alleviate city congestion. However, it is a non-trivial task for predicting city-wide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e.g., camera, ultrasonic sensor, and GPS). To this end, we propose Semi-supervised Hierarchical Recurrent Graph Neural Network (SHARE) for predicting city-wide parking availability. Specifically, we first propose a hierarchical graph convolution structure to model non-Euclidean spatial autocorrelation among parking lots. Along this line, a contextual graph convolution block and a soft clustering graph convolution block are respectively proposed to capture local and global spatial dependencies between parking lots. Additionally, we adopt a recurrent neural network to incorporate dynamic temporal dependencies of parking lots. Moreover, we propose a parking availability approximation module to estimate missing real-time parking availabilities from both spatial and temporal domain. Finally, experiments on two real-world datasets demonstrate the prediction performance of hmgnn outperforms seven state-of-the-art baselines.
DOI:
10.1609/aaai.v34i01.5471
AAAI
Vol. 34 No. 01: AAAI-20 Technical Tracks 1
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved