Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
Student Abstract Track
Downloads:
Abstract:
Emergency Departments (EDs) provide an imperative source of medical care. Central to the ED workflow is the patientcaregiver scheduling, directed at getting the right patient to the right caregiver at the right time. Unfortunately, common ED scheduling practices are based on ad-hoc heuristics which may not be aligned with the complex and partially conflicting ED’s objectives.In this paper, we propose a novel online deep-learning scheduling approach for the automatic assignment and scheduling of medical personnel to arriving patients. Our approach allows for the optimization of explicit, hospitalspecific multi-variate objectives and takes advantage of available data, without altering the existing workflow of the ED. In an extensive empirical evaluation, using real-world data, we show that our approach can significantly improve an ED’s performance metrics.
DOI:
10.1609/aaai.v33i01.330110013
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33