Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Natural Language Inference (NLI) is fundamental to many Natural Language Processing (NLP) applications including semantic search and question answering. The NLI problem has gained significant attention due to the release of large scale, challenging datasets. Present approaches to the problem largely focus on learning-based methods that use only textual information in order to classify whether a given premise entails, contradicts, or is neutral with respect to a given hypothesis. Surprisingly, the use of methods based on structured knowledge – a central topic in artificial intelligence – has not received much attention vis-a-vis the NLI problem. While there are many open knowledge bases that contain various types of reasoning information, their use for NLI has not been well explored. To address this, we present a combination of techniques that harness external knowledge to improve performance on the NLI problem in the science questions domain. We present the results of applying our techniques on text, graph, and text-and-graph based models; and discuss the implications of using external knowledge to solve the NLI problem. Our model achieves close to state-of-the-art performance for NLI on the SciTail science questions dataset.
DOI:
10.1609/aaai.v33i01.33017208
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33