
dollar signs and became corporate
tycoons, building expert systems and
natural language front ends. Many
joined the newest rebel movement
and became connectionists.

The annual Theoretical Issues in
Conceptual Information Processing
Workshop has become a sort of gath-
ering place for those who haven’t
yielded to temptation and have
attempted to live within the old
scruffy paradigm: building systems
and exploring cognitive tasks. The
June 1987 workshop, however, was
geared toward bringing new faces into
this community. It was aggressively
advertised, the call for papers was
widely announced, and the program
committee (Richard Alterman, Jaime
Carbonell, Michael Dyer, and myself)
went out of its way to find panels and
panelists that would broaden the
appeal of the workshop.

I, for one, was amazed by the
amount of interest expressed. Over
150 people were invited to attend, and
many others, although doing related
work, could not be admitted because
of space and budget limitations. Par-
ticipants were active, both in and out
of the workshop rooms, and many a
debate continued long into the night (I
was informed that no fistfights were
actually observed). It is impossible to
convey all the views expressed at the
workshop, but this article includes
contributions from those actively
involved in organizing the event.
These participants describe their
panel or talk and add personal obser-
vations as necessary. 

First, I wish to thank the workshop

From the Program Chair

In 1981, Bob Abelson delivered a
keynote speech to the Cognitive Sci-
ence Society. In this talk he differenti-
ated between two large segments of
the AI community: the neats and the
scruffies. The neats liked everything a
priori formalized. The scruffies pre-
ferred to build systems and experi-
ment with new ideas. The neats tend-
ed toward logic, the scruffies toward
psychology; the neats worked with
paper and pencil, the scruffies with
computers; the neats worried about
soundness and consistency, the
scruffies leaned toward nonlogical
representation schemes and used
terms such as psychological validity;
the neats tended to congregate on the
West Coast, the scruffies on the East.

A lot has changed since that talk.
As applied AI has gained in populari-
ty, the term scruffy has become asso-
ciated with all those who build sys-
tems, particularly expert systems.
The International Joint Conference on
Artificial Intelligence and the Ameri-
can Association for Artificial Intelli-
gence began to present two tracks at
their conferences: science and engi-
neering.  The original scruffies, who
had always followed a sort of experi-
mental paradigm (using implementa-
tions to explore theoretical ideas)
didn’t really fit; those still worrying
about cognition and cognitive tasks
became AI’s excluded middle. They
started to move into other, more
socially acceptable, subfields of the
discipline. Some strayed into the logic
formalism camp. Some followed the

The Fifth Annual Theoretical Issues in
Conceptual Information Processing Work-

shop took place in Washington, D.C. in
June 1987. About 100 participants gathered
to hear several invited talks and panels dis-

cussing the issues relating to artificial
intelligence and cognitive science.

Theoretical Issues in 
Conceptual Information 
Processing
James Hendler, B. Chandrasekaran, 
Beth Adelson, Richard Alterman, 
Tom Bylander, and Michael Dyer

WORKSHOP REPORT
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sponsors for their support. AAAI pro-
vided financial assistance that enabled
us to invite many more graduate stu-
dents than might normally attend
such a workshop. The University of
Maryland Institute for Advanced
Computer Studies matched the AAAI
dollars, enabling us to afford the
rooms where the workshop was held,
feed the participants, and help support
the keynote speakers and other invit-
ed guests. DARPA, ONR, NASA and
NSF also contributed by allowing
release time for their attending per-
sonnel. A special thanks to Y. T.
Chien, Alan Meyrowitz, Mel Monte-
merlo, and Robert Simpson, who pre-
sented a special panel on directions
for cognitive science research and
funding. 
—J. Hendler, University of Maryland

From the Workshop Chair
AI is commonly said to be preparadig-
matic, or prescientific; that is, it is
not yet a science with a unified
methodology. Stances about the
nature of intelligence and how to
study it abound. In an earlier work-
shop in this series, I presented a view
of how AI actually works as a disci-
pline and identified three views about
how to study and understand intelli-
gence: (1) architectural theories, (2)
logical formalisms, and (3) functional
theories (Chandrasekaran 1988). The
series of TICIP workshops have more
or less implicitly brought together
workers in the functional theory
camp. The goal of these gatherings
has been to understand intelligence
and cognition as feasible computa-
tions as they apply to the construc-
tion of performance programs for nar-
rowly defined tasks (expert systems).
The feasibility aspect emphasizes
organizational issues, which, in turn,
strongly color the representational
commitments, and leads to an
attempt to identify the functional
components of intelligence as a pro-
cess and how each of these compo-
nents is achieved in a computational-
ly efficient manner. 

This workshop, as those which pre-
ceded it, explored issues pertaining to
knowledge and memory for natural
language understanding, planning,
problem solving, explanation, learn-

ing, and other cognitive tasks within
this paradigmatic perspective. The
approaches were limited by a concern
with representation, organization, and
the processing of conceptual knowl-
edge, with an emphasis on empirical
investigations of these phenomena
through the experimentation and
implementation of computer pro-
grams.

Connectionism has been met in the
AI community with an interest rang-
ing from mere curiosity to religious
conversion. In my talk on connection-
ism and AI at the workshop, I granted
one of its basic claims: It is not to be
viewed as a mere implementation-
level mechanism for discrete symbol-
ic theories. In principle, a connection-
ist implementation and a symbolic
implementation for the same task can
make different representational com-
mitments and, thus, can constitute
different theories of information pro-
cessing for the task. However, as the
tasks get sufficiently far from the raw
architecture level, that is, for most
cognitive phenomena, the differences
in representational commitments
between connectionist and symbolic
realizations become increasingly
smaller. Systems for implementing
these tasks share the information-pro-
cessing abstractions needed for the
task. These abstractions dominate the
differences in the content of the repre-
sentations. The hard work of theory
making in AI will always
remain—proposing the information
prcessing–level abstractions needed
for the tasks that constitute intelli-
gence. Thus, I argued, connectionism
is a corrective to what one might call
Turing Imperialism; however, for
most of the control issues of intelli-
gence, connectionism is only
marginally relevant.
—B. Chandrasekaran, Ohio State

Reasoning by Analogy
Panel Chair: Beth Adelson, Tufts Uni-
versity. Panel Members: Jaime Car-
bonell, Carnegie-Mellon University;
Kris Hammond, University of Chica-
go; Douglas Hofstadter, University of
Michigan. Discussant: Andrew
Ortony, University of Illinois.
The panel was concerned with mak-

ing theories of analogic learning pow-
erful in their predictions and explana-
tions. The members of the panel con-
verged on the following paradigm:
When modeling a system that builds
and uses analogy, the system should
be viewed as functioning within a
problem-solving context. That is, the
system is trying to bring knowledge to
bear for the purpose of solving what-
ever problem is currently at hand.
Thus, the knowledge the system has
and the particulars of the problem
being solved both constrain the sys-
tem during analogic problem solving.
When this theoretical view of prob-
lem solving under constraint is taken,
the researcher can see the functional
constraints under which the system
operates. As a result, the system can
be formulated at a functional level
and gains the desired explanatory and
predictive power.

This issue of contextually con-
strained analogic problem solving
addresses the question of how analo-
gies are formed and used. However,
our paradigm also leads us to ask why
analogies are formed. Clearly, they are
formed to solve certain types of prob-
lems (those in which a previously
solved problem can provide relevant
information for a current problem).
This answer is important because it
leads to the following observation. An
analogic problem solver needs to be a
subsystem, existing within a larger
system for solving all types of prob-
lems, only some of which are analog-
ic. Thus, the analogic subsystem has
to be formulated in a way that allows
it to work not only with a general-
purpose memory but also with sub-
systems which perform other types of
problem solving. 

The following subsection illustrates
the use of contextual constraints as an
aid to theory development. (This work
was done collaboratively by Mark
Burstein and Beth Adelson.)

Mapping and Integrating Partial
Mental Models

The goal of this research is to develop
an analogic learning theory that
accounts for the formation and use of
multiple partial but general
purpose–based models (for example,
behavioral, causal, and topological
models) in complex problem solving.

72    AI  MAGAZINE



We are developing the theory by pro-
ducing a computational model that
acquires models by analogy, integrates
the models, and answers questions
based on the integrated models.
Mapping Purpose-Based Models.   One
aspect of our work concentrates on
the development of a detailed theory
of purpose-driven analogic mapping
that takes into account the type of
model which needs to be produced in
the current problem-solving context.
The distinction between model types
needs to be made explicit because it is
difficult to find a single analogic
model that can adequately describe all
aspects of a complex target system
and, therefore, can support the solu-
tion of all types of problems relevant
to the system. We believe that the
role of the purpose-based model type
in selecting and mapping relevant por-
tions of a base domain is an important
and, as yet, poorly understood compo-
nent of analogic reasoning. In address-
ing this issue, we are studying and
modeling the details of how different
types of models are selected and
mapped to form models of the same
type in a new domain. Our distinction
between model types simplifies the
description of analogic structure
matching and mapping; in our
account, models of a given type map
to form new models of the same type.
(The matching and mapping processes
are difficult to describe successfully
without this explicit distinction
because models of different types use
different relations in their descrip-
tions.) 

Integrating Purpose-Based Models.
A second aspect of our research focus-
es on the integration of partial pur-
pose-based models in a target domain.
Typically, several different types of
models are needed to capture all
aspects of a complex target domain.
As a result, integrating a domain
model that was acquired by reasoning
from several analogies is an important
component of the overall learning
process. A detailed theory of the rea-
soning required to integrate partial
models is being developed. These rea-
soning procedures are general to a
learning theory in that they combine
partial models which were acquired
either by analogy or direct explana-
tion. Additionally, the principles

underlying the procedures are inde-
pendent of the domains being mod-
eled. They are based on: (1) the kinds
of relationships needed to describe
each type of model, (2) general knowl-
edge of how these relationships can be
used to model various aspects of a sys-
tem, and (3) knowledge of the corre-
spondences between model types. The
principles form the basis of a kind of
pattern-matching process in which
corresponding elements of two differ-
ent types of models are identified and
then appropriately linked.

We believe that refining the map-
ping process by including a taxonomy
of purpose-based models and specify-
ing a set of domain-independent rea-
soning mechanisms for merging the
resulting models results in a powerful
theory of analogic learning.

New Directions in Planning
Panel Chair: Richard Alterman, Bran-

deis University. Panel Members:
David Chapman, Massachusetts Insti-
tute of Technology; Tom Dean, Brown
University; Jim Hendler, University of
Maryland; Janet Kolodner, Georgia
Institute of Technology; and Edwina
Rissland, University of Mas-
sachusetts.
Recently, a renewed interest in plan-
ning has emerged within the AI and
cognitive science communities. The
idea behind this panel was to identify
some of the major themes, not only
by those whose concerns were strictly
identified with planning but also
those whose interests in the general
problem of reasoning seem to contain
many of the same motivating con-
cerns. (As Chapman suggested, “Work
on planning as an isolated phe-
nomenon will eventually give way to
studying planning as one of many
sorts of reasoning that go into guiding
practical activity.”) With this state-
ment in mind, I posed these two
deliberately provocative sets of ques-

Figure 1. New Directions in Planning Research.

Old Paradigm New paradigm

Ahistoric Memory-based
coupled with learning.

Associative memory
used for retrieval and testing.

Case-based

Small chunks Large chunks

Abstract Concrete

Situation independent Situation dependent

Situation action

Situation matching

Planning/acting Planning/acting
independent. interleaved or indistinguishable.

Dynamic situations.

Reactive, real time.

complete knowledge incomplete knowledge

domain independent domain dependent

Single or few goals Many goals
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tions to the panel: (1) What is the old
reasoning and planning paradigm?
How would you describe the emerging
paradigm in reasoning and planning in
contrast to the old one? (2) In what
direction do you see us moving? How
does your own work on reasoning and
planning reflect these directions? The
panelists exchanged viewpoints before
the workshop. During the workshop,
each panelist gave a five-minute pre-
sentation; an hour-long discussion fol-
lowed. 

The mood of the panel can be char-
acterized by the following concerns
and questions: (1) Maybe it is not such
a good idea to entirely separate plan-
ning and acting.(2) Maybe we need to
pay closer attention to the role of situ-
ations. (3) How do you plan in situa-
tions where routines and habitual
activities are the rule? (4) We need to
pay closer attention to situations
where multiple goals are operative. (5)
What is the role of memory in plan-
ning? (6) What about dynamic plan-
ning situations that require real-time
decisions?

The emerging themes can also be
characterized by the list of contrasting
old and new ideas shown in figure 1.
In many cases, the so-called new ideas
have been around in one form or
another for several years. What does
appear to be new is the shift in focus
between sets of ideas (or assump-
tions). 

Diagnostic Reasoning
Panel Chair: Tom Bylander, The Ohio
State University. Panel Members:
Shoshana Hardt, the State University
of New York at Buffalo; Michael Paz-
zani, the University of California at
Los Angeles; Jon Sticklen, The Ohio
State University; and Roy Turner,
Georgia Institute of Technology.
In essence, diagnosis is a problem of
explaining failures of expectation. The
process of diagnosis starts with obser-
vations of a misbehaving system and,
if successful, produces a single persua-
sive explanation of why the system
isn’t working properly. Theories of
diagnosis must then be concerned
with the representation of observa-
tions and explanations and the pro-
cess of using diagnostic knowledge to

generate explanations from observa-
tions as well as the process of learning
how to diagnose.

Diagnostic problems differ along a
number of dimensions. Devices gener-
ally provide much freedom for observ-
ing internal events and changing
input; the situation is quite different
in medical diagnosis. The form of
knowledge can range from statistical
associations to a physical model of
behavior, from schematic knowledge
for each possible malfunction to the
generation of possible malfunctions
and the rules for evaluating them. In
many domains, more than one mal-
function is rare, but in others, multi-
ple, causally related malfunctions
often occur. Because many types of
diagnostic problems exist, it is unlike-
ly that a single theory is sufficient to
cover them all. Thus, it is important
to understand each theory in terms of
the type of diagnostic reasoning that
it tries to explain and the inherent
limitations of the problem solving it
proposes.

Hardt discussed diagnostic reason-
ing that fits a general understanding
process. In this process, features of the
domain are organized into meaning-
ful, mostly predefined conceptual
structures. The conceptual structures
are acquired from a variety of sources
with different degrees of abstractness.
At opposing extremes, structures
might be based on a deep understand-
ing about the domain, or structures
might be based on how previous cases
were processed and generalized. Rea-
soning is required to connect different
structures, fit a structure to a new sit-
uation, or select among various struc-
tures in cases of incomplete knowl-
edge. The effectiveness of diagnostic
reasoning is measured by the ability
to single out, from all the potential
structures, only the relevant ones that
should be pursued and used to drive
the reasoning process. Hardt and her
colleagues developed a shell called
DUNE (Hardt et al. 1986) that can
support feature organization and case-
based reasoning. She presented several
examples of how these ideas were
applied to the domain of psychiatric
diagnosis (Hardt and MacFadden
1987).

Turner described his plans to con-
struct MEDIC, a case-based diagnostic

reasoner working in the domain of
pulmonology. This project has three
goals: (1) to examine the role of expe-
rience in medical diagnosis, (2) to
examine the human diagnostic rea-
soning process, and (3) to provide a
starting point for a next-generation
expert system. MEDIC has four main
parts: a long-term memory, a short-
term memory, a reasoner, and a con-
troller. The long-term memory is a
dynamic memory (Schank 1982) pat-
terned after Kolodner’s (1984) CYRUS
program. It includes representations
of diseases, causes of diseases, doc-
tors, and patients as well as episodic
information. The short-term memory
is a simple blackboardlike data struc-
ture that can contain remindings,
hypotheses being entertained about
the problem, and expectations of
future findings. The reasoner is a case-
based opportunistic reasoner. It shares
features with case-based reasoners and
opportunistic planners (Hayes-Roth
1985): It reasons from previous cases,
and it is capable of being interrupted
at any time by new information from
the memory or the user. The con-
troller handles communication
between the memories and the rea-
soning.

Sticklen (1987) presented MDX2, a
problem-solving system that uses a
distributed architecture to diagnose
cases in a subdomain of clinical
medicine. MDX2 is based on the idea
that complex knowledge-based rea-
soning can be decomposed into
instantiations of generic problem-
solving types (Chandrasekaran 1986).
It integrates many of the problem-
solving abilities that researchers have
found desirable in automated medical
diagnostic procedures: data-directed
reasoning, question asking, multiple
disease perspectives, the ability to
handle multiple interacting diseases,
the ability to support compiled diag-
nosis with deep-level reasoning, and
abductive problem solving. Sticklen
addressed two issues. First, to decom-
pose complex diagnostic problem
solving into primitive interacting
modules, MDX2 contains an abduc-
tive algorithm that directs attention
between different disease classes, han-
dles attention shifts as they become
necessary because of incoming patient
data, and forms composite hypothe-
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ses. Second, to combine compiled
problem-solving ability with a deep
reasoning component, MDX2 incorpo-
rates two types of methods for evalu-
ating a disease: (1) directly matching a
prestored pattern with the patient
data and (2) deriving a pattern from a
functional representation of human
body physiology, then carrying out the
match. 

Pazzani compared several different
approaches to learning diagnostic
knowledge. In this case, learning to
diagnose involves acquiring associa-
tions from atypical features (that is,
symptoms) and malfunctions. Howev-
er, in many disciplines, such as diag-
nosing electronic or mechanical sys-
tems, students are taught how these
systems operate rather than what the
empirical associations are between
symptoms and malfunctions. These
students acquire empirical associa-
tions from problem-solving experi-
ences. Pazzani compared similarity-
based and explanation-based learning
approaches and failure-driven and suc-
cess-driven approaches. In contrast to
similarity-based systems, which
require a large number of examples
(Pazzani and Dyer 1987), explanation-
based learning can be used to acquire
diagnostic knowledge much more
effectively if sufficient knowledge of
system functionality is available (Paz-
zani 1986). With regard to failure-driv-
en and success-driven learning of diag-
nostic knowledge in an explanation-
based learning system, failure-driven
learning is more effective because it
acquires knowledge that better distin-
guishes between potential diagnoses. 

Is Connectionism 
Cognitive Science? 

Panel Chair: Michael Dyer, UCLA.
Panel Members: B. Chandrasekaran,
The Ohio State University; Christo-
pher Cherniak, University of Mary-
land; Donald Dearholt, New Mexico
State University; Stevan Harnad,
Princeton University; and Yorick
Wilks, New Mexico State University.
The TICIP workshops are normally
attended by natural language, plan-
ning, and cognitive modeling
researchers, with a relatively large
subgroup consisting of Roger Schank’s

students and former students. The
approach taken by these researchers is
typically symbolic in nature (an
approach not normally considered
controversial). However, at the most
recent TICIP workshop, quite a lot of
discussion concerned connectionism.
Two major address speakers talked at
length on the subject. Chandrasekaran
spoke on connectionism and cognitive
science. Wilks gave a keynote address
entitled “What Does Connectionism
Mean for Natural Language Seman-
tics?” Schank, another major address
speaker, briefly mentioned connec-
tionism and included it (along with
logic and syntax) as another submove-
ment within cognitive science that
takes researchers away from the real
task of developing content-oriented
models of cognitive processing. In
addition, I discovered that I had been
made chair of the panel entitled “Is
Connectionism Cognitive Science?”

Overall, the speakers emphasized
how connectionism has to solve
essentially the same problems as
those facing cognitive modeling
researchers; thus, connectionism is
not a panacea. Because of the down-
playing of connectionism, what is
potentially new, useful, or exciting
about it did not always get across.

Connectionist Parallel Distributed
Processing models are attractive for
many reasons: Content addressability
and pattern completion are free; the
models thrive on noise; they extract
statistical regularities from data and
are somewhat able to generalize
appropriate responses to novel input;
they learn through constant repetition
and adaptation (versus rule-based
induction); they can exhibit some
rulelike behavior without any explicit
representations of rules or a rule inter-
preter; they make decisions by mas-
sively parallel constraint satisfaction;
they provide a closer link to both the
brain sciences (for example, they are
lesionable) and the physical sciences
(through their statistical properties);
they implement theories of forgetting
based on interference (versus the lost
pointer or a weakened chemical
trace); they allow intermediate knowl-
edge structures to be generated
dynamically (for example, something
in between a bedroom and a kitchen);
and they provide a way to represent

This workshop. . .
explored issues pertain-

ing to. . .natural language
understanding, planning

problem solving, explana-
tion, lerning, and other

cognitive tasks
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skill-based (versus declarative) knowl-
edge (Rumelhart, McClelland, and the
PDP Research Group 1986).

Another way to ask the question “Is
connectionism cognitive science?” is
“How far can one push weight matri-
ces?” This question has been taken up
by several researchers, for example,
Pinker and Prince (1987). At TICIP, I
simply pointed out that symbolic and
PDP models at this stage seem to live
in separate computational-ecological
niches. Much of what is currently
awkward for symbolic models is easy
for connectionist models and vice
versa. Here is a brief list of features
that are easy for symbolic models but
pose difficult problems for PDP mod-
els: variables, role bindings, pointers,
recursive data structures, separate
instantiations, inheritance, stored
inference chains, unbounded input
sequences, the factoring out of con-
cepts, storage management, theories
of complex architectures of control,
and portability of knowledge (that is,
any procedure can access and apply
declarative information produced by
any other procedure as long as a
shared canonical representational for-
malism exists).

Shortly after the workshop, I
attended (along with 2000 others!) the
First International Conference on
Neural Networks in San Diego. Here,
I overheard more than one attendee
state that “AI is dead” and heard more
than one major speaker refer to avoid-
ing the “AI trap” (in which claims are
made that hard, unsolved problems
have been solved by an AI system
when the system could never deal
with real-world input). At the same
time, some commercial fliers at the
conference mentioned the total elimi-
nation of programmers because of pro-
grams that now learn on their own.
Some commercial leaders in the new
business of neurocomputing have
even stated in interviews that their
products operate at the stage of a 4-
year-old. (A similar category mistake
was made years ago by many AI
researchers.) Seeing the connectionist
field burning with an even hotter and
faster flame than AI probably gives
some AI researchers pleasure because
the field of AI has itself been criti-
cized for excessive hype. However,
given the speed and excitement with

which connectionism is growing, it is
important that both the correct role
and the promise of connectionism
(with respect to cognitive science) be
elucidated.

So what’s the relationship between
connectionism and cognitive science?
Much connectionist research appears
to be bottom up in nature. Many vari-
ants on the generalized delta rule are
created and their properties observed.
Specific networks are built, and exper-
iments are performed to see how well
they behave on various tasks. This
kind of research is of fundamental
importance, but a top-down approach
is also needed. It is important to
select high-level cognitive tasks, such
as language comprehension, and con-
struct complex connectionist archi-
tectures capable of performing these
tasks (McClelland and Kawamoto
1986; Touretzky and Hinton 1986;
Dolan and Dyer 1987; Touretzky
1987). Those connectionists coming
from the physical and signal-process-
ing sciences are often unaware of the
problems inherent in high-level plan-
ning, problem solving, and natural
language tasks. Consequently, a need
exists for AI researchers to carefully
examine this emerging field of con-
nectionism and to contribute their
knowledge, insights, and experience.
Connectionism is an important part
of cognitive science.
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