
■ Automated diagnosis is an important AI
problem not only for its potential practical
applications but also because it exposes
issues common to all automated reasoning
efforts and presents real challenges to ex-
isting paradigms. Current research in this
area addresses many problems, including
managing and structuring probabilistic in-
formation, modeling physical systems, rea-
soning with defeasible assumptions, and
interleaving deliberation and action. Fur-
thermore, diagnosis programs must face
these problems in contexts where scaling
up to deal with cases of realistic size re-
sults in daunting combinatorics. This arti-
cle presents these and other issues as
discussed at the First International Work-
shop on Principles of Diagnosis.

Diagnosis has historically provided
an obliging rock for each succeeding
generation of AI researchers to blunt
their axes on. Occasionally, someone
chips a golden nugget from this rock:
Diagnosis has motivated research ef-
forts and new techniques, resulting
in discoveries for the field that re-
searchers still explore. The rule-based
techniques in MYCIN (Shortliffe 1976)
and the model-based reasoning tech-
niques in SOPHIE III (Brown, Burton,
and de Kleer 1982), to name two ex-
amples, initiated the development of
technologies that are integral parts of
general AI practice today. Silver
nuggets, individually less valuable but
far more numerous, appear as well:
AI applications in diagnosis appear to
have been—and probably remain—
the single largest category of expert
systems in use (Harmon 1988). The
diagnosis problem in general might
never be solved, but this fact hardly
matters—just look at all the nuggets
the work has produced already. Re-
searchers continue to pound away at
the diagnosis problem, each with
his/her own axe. Further nuggets for
AI, both gold and silver, will surely
be loosened by this relentless pound-
ing under different paradigms.

Currently, two dominant paradigms
exist within the diagnosis community:

the probabilistic paradigm and the
logic-based paradigm. Not surprisingly,
some of the most interesting research
transcends these categories; never-
theless, these categories are convenient
shorthand for certain recognized
communities with different approaches
to diagnosis.

In the probabilistic paradigm, diag-
nostic knowledge is typically repre-
sented as a set of associations between
disorders and their symptoms, with
the task of the program being to find
the set of disorders that is most likely
given the symptoms. Although the
probabilistic paradigm is dominated by
Bayesian approaches (Szolovits and
Pauker 1978), relying on mechanisms
such as belief networks (Pearl 1986),
other approaches such as Dempster-

Shafer belief measures and connec-
tionism lead to similar architectures
(Shortliffe 1976; Gordon and Short-
liffe 1985; Peng and Reggia 1989).

In the logic-based paradigm, diag-
nostic knowledge is typically repre-
sented as a first-order theory of
operation for the system being diag-
nosed, and the diagnosis task is to
find the set of diagnoses that are logi-
cally possible given the symptoms.
There are consistency-based approaches,
in which the diagnosis need only be
consistent with the symptoms (Davis
1984; Genesereth 1984; Reiter 1987),
and abductive approaches, in which
the diagnosis must entail the symptoms
(Patil, Szolovits, and Schwartz 1981;

Poole 1989). The term model-based
diagnosis has historically been coexten-
sive with logic-based diagnosis, al-
though the real distinction is one of
emphasis; research in model-based
diagnosis emphasizes the nature of
the model of the patient and its role
in defining the space of potential di-
agnoses (Davis and Hamscher 1988).

The First International Workshop
on Principles of Diagnosis (Dx-90),
sponsored by Price Waterhouse Tech-
nology Centre and the American As-
sociation for Artificial Intelligence
(AAAI) in cooperation with the Asso-
ciation for Computing Machinery
(ACM), was held in July 1990 at Stan-
ford University. Like any workshop, Dx-
90 served as a snapshot of an area of
research in progress, making explicit
the current issues and themes. At Dx-
90, seven themes recurred in a variety
of forms, suggesting the following
questions to which researchers are
currently devoting their attention:

Characterizing of diagnoses:
What is a diagnosis? A foundational
step of automated diagnosis is to
define what constitutes an acceptable
and computable answer within a par-
ticular representation.

Nonmonotonic reasoning: How
can an automated diagnostician em-
ulate the ability of a human diagnos-
tician to manipulate and revise
assumptions about the nature of the
system being diagnosed, the nature
of the fault, and so on?

Abduction: Can technology devel-
oped for diagnosis be generalized to
perform other abductive reasoning
tasks, and conversely, does the general
notion of abduction as “inference to
the best explanation” provide any
computational leverage on the more
specific problem of diagnosis?

Synthesis of logic and probability:
Can a single diagnosis framework ex-
ploit complementary advantages of
probabilistic and logic-based diagnosis?

Scaling: What computational ar-
chitectures can deliver acceptable
performance and accuracy for diag-
nosis problems of realistic size?

Device modeling: What principles
of constructing and using device
models in the model-based paradigm
will lead to useful diagnoses along
with computational efficiency?

Broadening of automated diag-
nosis: How can diagnosis programs,
which often focus on the narrow
problem of computing the most
probable diagnosis, exploit the richer
context and capabilities available to
human diagnosticians?
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The Characterizing of 
Diagnoses

In the consistency-based paradigm, a
system being diagnosed is characterized
by a set of components whose status
is either normal or abnormal. A diag-
nosis is a set of abnormal compo-
nents (along with the implicit
complementary set of normal com-
ponents) such that the resulting state
of the system is consistent with the
symptoms observed (Reiter 1987).
This definition is similar to that used
by Reggia, Nau, and Wang (1983), in
which a diagnosis is a set of disor-
ders, the union of whose symptoms
include all observed symptoms. A
minimal diagnosis as defined by de
Kleer and Williams (1987) is one in
which abnormality is minimized;
that is, changing the status of any ab-
normal component to normal would
make the diagnosis inconsistent with
the symptoms. In principle, the min-
imal diagnoses are a compact charac-
terization of the set of all diagnoses
because every superset of a minimal
diagnosis could be a diagnosis.

This characterization is adequate 
if the abnormality of a component 
is consistent with all possible behav-
iors. However, if components are
constrained in their possible behav-
iors when they fail, then the notion
of a minimal diagnosis is inadequate:
Some supersets of a minimal diagno-
sis might not be consistent with the
observed symptoms and, hence, not
be diagnoses. As a result, researchers
working within the consistency-based
diagnosis paradigm have begun to
question the adequacy of the notion
of minimal diagnoses.

One alternative characterization of
the set of diagnoses is as a set of kernel
diagnoses. The intuition is as follows:
Reasoning about the symptoms pre-
sented by a system produces conflicts,
a sentence describing the diagnoses
in conjunctive normal form (CNF).
However, the description is more
useful if the sentence is converted to
disjunctive normal form (DNF) be-
cause in this form, each alternative
diagnosis is explicitly stated as a sep-
arate clause. Previous research has fo-
cused on conflicts such as “either
component A or B is abnormal, and
either component B or C is abnor-
mal,” but if abnormality is not con-
sistent with every behavior, it is
possible to derive sentences of a
more general form, such as “either A
is abnormal or B is normal, and
either B is abnormal or C is normal.”

Converting these more general sen-
tences to DNF yields kernel diagnoses
that provide a more constraining
characterization of the space of diag-
noses (de Kleer, Mackworth and Reiter
1990). Similar intuitions are exploit-
ed in the GDE+ system of Struss and
Dressler (1989). Saraswat, de Kleer,
and Raiman (1990) demonstrated
that these syntactic characterizations
of diagnoses can usefully be sup-
planted by model-theoretic charac-
terizations.

An alternative characterization of
diagnoses exploits the intuition that
diagnoses can be clustered according
to the ways in which they account
for symptoms (Pople 1977; Wu 1990).
In medical diagnosis, thousands of
individual disorders are possible, and
it is not unusual for diagnoses to in-
volve more than three underlying
disorders. Under these circumstances,
the length of the sentences makes
full conversion from CNF to DNF im-
practical. In the clustering approach,
the symptoms (effectively, conflicts)
are instead clustered into an interme-
diate form. Intuitively, symptoms are
clustered when they can all be ex-
plained by a single disorder, and the
clusters are mutually exclusive. To il-
lustrate, let d1, d2, and d3 be disorders,
and s1 and s2 be symptoms, with s1
→ d1 ∨ d3, and s2 → d2 ∨ d3. Suppose
that we observe both symptoms s1
and s2. In CNF, the diagnosis is (d1 ∨
d3) ∧ (d2 ∨ d3) and, after transforming
into DNF, is d3 ∨ (d1 ∧ d2). In the 
DNF form, each clause refers to a sepa-
rate combination of disorders that
could have caused the observed
symptoms. The alternative is to rep-
resent the diagnoses as (s1 s2), mean-
ing that both symptoms are caused
by the same disorder, and (s1) (s2),
meaning that there are two different
disorders, one causing s1 and the
other causing s2. In cases where there
are many symptoms and disorders,
this intermediate form is useful be-
cause it allows attention to be focused
on parsimonious diagnoses (those with
fewer clusters), yet it is much easier
to compute than a full conversion to
DNF. Although the results are still in-

conclusive, clustering might be able
to computationally exploit the fact
that certain sets of di tend to account
for the same sj (Wu 1991).

Nonmonotonic Reasoning
The notion of abnormality drawn on
by work in logic-based diagnosis is
nonmonotonic (Ginsberg 1987), and
several researchers are actively seek-
ing to exploit nonmonotonic reason-
ing in diagnostic settings. Human
diagnosticians always reason under
assumptions that can require revi-
sion—there are fewer than n faulty
components, the system description
is correct, and so on—so nonmono-
tonic reasoning is, in some sense, an
inevitable element of diagnosis.
Reiter (1987) explicitly drew a con-
nection between diagnoses and exten-
sions of normal default theories that
laid a foundation for this intuition.

One approach is to view a set of as-
sumptions as coherent if it has a
valid extension in a nonmonotonic
framework (Dressler 1990). One kind
of assumption important in logic-
based diagnosis is a correctness as-
sumption, that is, an assumption that
a particular component C in a system
is working normally. Formally, it is the
assumption that ab(C) is false, where
ab(.) is the abnormality predicate. For
this kind of assumption, a coherent
assumption set is a diagnosis because
it is consistent yet minimizes abnor-
mality. This approach addresses, in a
different way, the same problem ad-
dressed by de Kleer, Mackworth, and
Reiter (1990): In general, not all su-
persets of minimal diagnoses are
valid diagnoses.

A different approach is to make a
connection between minimal diagnoses
and the logic programming notion of
a stable model (Gelfond and Lifschitz
1988). A stable model is essentially an
extension in an autoepistemic
theory. Among the advantages of this
approach is that it allows the use of
existing algorithms and results on
computing stable models of logic
programs in a logic-based diagnostic
setting; further, it might allow the
system description itself to be written
as a nonmonotonic theory and, thus,
be more compact than an ordinary
first-order theory (Eshghi 1990).

Intuitively speaking, components
that have exhibited no symptoms of
failure can (defeasibly) be exonerated.
It is reasonable to expect that non-
monotonic reasoning in a diagnostic
setting should exploit this intuition.
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only consistent diagnoses will be
those in which the disorders entail
every observed symptom (Struss and
Dressler 1989). Another method of
extending the consistency-based ap-
proach is to ensure that the observa-
tions are derived in all extensions of
a nonmonotonic theory (Dressler
1990). Still another method arises
from extending the consistency-
based paradigm with probabilistic in-
formation. In a Bayesian framework,
the posterior probabilities of diag-
noses that fail to entail the symp-
toms will naturally be lower than the
posteriors of diagnoses that do not (de
Kleer and Williams 1987, 1989). A
more direct approach is to treat ab-
duction as an inference procedure
separate from deduction (Poole 1989).

Abductive frameworks must be used
with caution. It is rarely practical, even
in engineered and well-understood
systems such as digital circuits, to
enumerate all the fault modes of
every component type. Completion
axioms are safe only when defeasible
(Struss and Dressler 1989). In less
well-understood domains, such as
physiological systems, the domain
experts might be willing to enumerate
many disorders, but the incompleteness
is always acknowledged either by a
willingness to admit diagnoses that
do not guarantee entailment of every
observed symptom (Pople 1982;
Reggia, Nau, and Wang 1983) or by
the admission of unknown causes
(Console, Dupré, and Torasso 1989)
to account for symptoms. Another
cautionary note arises from the fact
that the most reliable criterion for
the best explanation (hence for the
best diagnosis) presumes a strong
notion of causality. That is, the pre-
ferred explanations are those that ex-
plain how the underlying disorders
caused the observed symptoms to
appear. Although much progress has
been made in the representation of
causality in general (Shoham 1987),
in practice, it remains difficult to
construct static knowledge bases that

A promising approach is to compute
alibis, in the terminology of Raiman
(1989). An alibi is a sentence that
concludes that a particular component
is normal if certain other components
are. Alibis can be constructed by cir-
cumscribing ab(.) in the theory con-
sisting of the union of the
description of the correct behavior of
the device with the observations of
its actual behavior (Raiman 1990).
For example, suppose that there is a
trivial system description consisting
of one component C, with the identi-
ty behavior ¬ab(C) ∧ (i = x) → (o = x).
If we observe i = 0 and o = 0, then cir-
cumscribing ab(.) results in the sen-
tence (i = 0) ∧ (o = 0) → ¬ab(C); that
is, C is defeasibly exonerated because
it has not exhibited any symptoms. A
key advantage of this approach is
that it can reduce the number of ob-
servations needed to conclude a diag-
nosis when used within a system
such as GDE (de Kleer and Williams
1987) that selects observations.

Abduction
Diagnosis can be viewed as an instance
of abduction, where a proper diagnosis
is essentially an explanation of how a
particular set of disorders caused the
observed symptoms. Abduction con-
trasts with deduction, which preserves
truth, and induction, which preserves
consistency. Abduction preserves ex-
planations, and because abduction is
inference to the best explanation,
varying the definitions of best and
explanation yields various known ap-
proaches to logic-based diagnosis
(Console and Torasso 1990; Zadrozny
1990). The abductive approach to di-
agnosis, in which diagnoses must
entail the symptoms, has at least one
advantage over approaches in which
diagnoses need only be consistent
with the symptoms: It is more restric-
tive (Console, Dupré, and Torasso
1989; Poole 1989). Because the set of
possible diagnoses is virtually always
combinatoric no matter what the
framework, any criterion that re-
stricts this space without sacrificing
validity is desirable.

There are several ways to extend
the consistency-based approach to
achieve this restriction. One method
is to use a completion semantics
(Clark 1978) for models of abnormal
behavior. Suppose that some symptom
s can be caused by just two known
disorders d1 and d2, so that d1 → s
and d2 → s. By adding the axiom s →
(d1 ∨ d2)—the completion of s—the

can adequately represent the multitude
of possible causal relationships
among events.

Because diagnosis can be described
as a special case of abduction, it is
also worthwhile to try exploiting
computational mechanisms developed
for model-based diagnosis to address
more general abduction problems.
The system CROSBY (Hamscher 1991a),
based on SHERLOCK (de Kleer and
Williams 1989), finds the most prob-
able explanations of financial data.
These explanations can—but do not
necessarily—include hypotheses that
the financial data contain errors.

Synthesis of Logic and
Probability

The two main approaches to diagnosis—
probabilistic and logic based—have
not yet successfully been reconciled.
The attempts to synthesize these ap-
proaches is an active research area
because of the strong motivations for
such a synthesis.

For example, probabilistic informa-
tion can be incorporated into the
inner loop of the computations in a
logic-based approach, specifically by
ensuring that inferences are drawn
only for the most probable sets of
assumptions (de Kleer 1991). This
modification dramatically improves
the performance of the program by
exploiting the observation that in a
diagnostic setting, only the most
probable combinations of disorders
are of interest.

Also, probabilistic approaches to
diagnosis, particularly when formulated
as belief networks, have been shown
to be practical, and important
progress has been made in solving
large-scale networks. However, the
disorder-symptom formulation of di-
agnosis, used so widely in the proba-
bilistic paradigm, is less flexible than
a logic-based formulation. Difficulties
include the necessity of enumerating
all disorders, the disjointness of dis-
orders from symptoms, the incorpo-
ration of contextual information,
and difficulties in representing tem-
poral relations among events. Proba-
bilistic information can also be
difficult to acquire, and as a result, it
would be desirable to derive the
probabilistic information from
domain knowledge about causation
and association, that is, from the sort
of knowledge on which the logic-
based approach focuses. Deriving a
probabilistic formulation of a diagno-
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sis problem from a partial causal
model is an important and challeng-
ing problem.

Finally, most real diagnosis problems
occur in situations where the avail-
able problem-solving resources must
be traded against the utility of find-
ing exact diagnoses. Diagnosis
should minimize overall cost, where
the cost of diagnosis includes the
cost of computation, the acquisition
of additional patient observations,
the reaching of possibly incorrect di-
agnoses, appropriate therapies, and
so on. Logic-based approaches offer
little guidance or power with respect
to this issue, but probabilistic ap-
proaches offer decision theory as an
initial framework. Research that ex-
ploits the strengths of both ap-
proaches would be valuable for this
reason.

Scaling and Performance
As a practical matter, diagnosis pro-
grams must run acceptably fast, even
when the set of possible diagnoses is
composed of multiple disorders from
a space of many hundreds of possible
disorders. Researchers in the proba-
bilistic paradigm have been con-
cerned with this scaling issue for
some time. Three common simplify-
ing assumptions aid this effort: (1)
the disorders are mutually exclusive
and exhaustive, (2) the symptoms are
conditionally independent, and (3)
there is no masking or interaction of
symptoms. One way to embody the
latter assumption in a belief net for-
mulation is by noisy or gate combina-
tion of symptoms; that is, each
symptom could be caused by any
supporting disorder, with the link
events independent.

These assumptions are used in the
QMR-BN project (Shwe et al. 1990), the
goal of which is to demonstrate real-
time diagnosis (that is, compute the
most likely diagnoses given a fixed
set of symptoms) using Bayesian
methods on a large knowledge base.
QMR (quick medical reference) is a
successor to the Internist system
(Pople 1977, 1982), and QMR-BN is a
belief net reformulation of its knowl-
edge base, containing some 600 dis-
orders, 4,000 symptoms, and 40,000
associations between disorders and
symptoms. In QMR-BN, the effects of
multiple disorders on a common
symptom are combined as a leaky
noisy or gate, meaning that for each
symptom there is an additional leak
event that can cause the symptom to

occur even when none of the known
disorders is present (members of the
QMR-BN project are considering alter-
native formulations because the diag-
noses found are sensitive to the leak
probabilities and, in practice, are dif-
ficult to establish). Leak events play a
role exactly analogous to unknown
causes in logic-based abductive ap-
proaches. The class of belief nets con-
forming to these assumptions is
termed BN20.

Because inference in general belief
nets is NP-hard (Cooper 1990), atten-
tion has focused on approximate solu-
tions. For example, the TOP N

procedure (Henrion 1991) generates
only the most likely n diagnoses. The
performance is impressive: A Mac II
implementation of TOP N was able to
analyze a case with 14 positive and
10 negative symptoms in only 17
seconds, achieving an error bound of
.02 on the probabilities of 7000 hy-
potheses. TOP N examines only the
most likely combinations of disorders
(which account for the majority of
the probability mass anyway) and
computes only the relative probabili-
ties of different disorders instead of
their absolute probabilities. TOP N

begins by examining the null hy-
pothesis (that is, no disorders and all
positive symptoms caused by leak
events), using a branch-and-bound
strategy to compute the relative
probability of each incremental hy-
pothesis. TOP N’s admissibility criteri-
on rests on the notion of marginal
explanatory power, which is the in-
crease or decrease in the relative
probability of a hypothesis H after in-
cluding an additional disorder d. The
BN20 assumptions let any search path
be pruned when its marginal ex-
planatory power is less than one and
allow for relatively simple computa-
tions of upper and lower bounds on
relative probabilities.

An alternative to the sequential
search approach exemplified by TOP N

is a connectionist approach retaining
the formulation of the diagnosis
problem as that of finding the most
plausible set of independent disorders
D accounting for a set of symptoms
S. Peng and Reggia (1989) demonstrate
this approach using an existing
knowledge base in a medical domain
that consists of causal strengths cij
representing how frequently disorder
di causes symptom sj; in effect, p (di
causes sj | di). A novel activation rule
is used in which all cij are excitatory,
and all the possible causes of each
observed symptom (that is, {di | cij >

0, and sj is observed}) are mutually
inhibitory. Intuitively speaking,
given an activated set of symptoms,
those disorders most strongly associ-
ated with these symptoms will be ac-
tivated, but solutions will be
preferred in which the fewest disorders
account for any observed symptoms.
Simulation results illustrate a poten-
tial for fast convergence to a solution
owing to the massively parallel
nature of connectionist computa-
tions, assuming computation parame-
ters have been selected properly to
avoid oscillation between solutions
and other undesirable behaviors
(Reggia, Peng, and Tuhrim 1990).
However, on some data sets, the
technique finds the correct answer
(in effect, a minimal diagnosis) 76 per-
cent of the time and gets one of the
three best answers 92 percent of the
time. These results suggest that fur-
ther research needs to be done to in-
vestigate this apparent trade-off
between computational speed and di-
agnostic accuracy.

Device Modeling
Constructing a formal description of
the system to be diagnosed is a key
step in the logic-based diagnosis
paradigm. For this reason, research in
this paradigm usually focuses on en-
gineering domains in which compu-
tational models already exist, hence
the phrase model-based diagnosis.
New research in this area is broaden-
ing the scope of device models to
which model-based diagnosis can be
applied.

Dynamic Devices

Until recently, most work in model-
based diagnosis focused on devices
with static behavior, that is, devices
whose output at time t depend only
on the input at t. Devices with dy-
namic behavior—whose output at t
can be a function of input arbitrarily
far in the past—are substantially
more important to actual engineering
practice, and techniques for diagnos-
ing them are an important research
subject.

For digital circuit diagnosis, an im-
portant demonstration domain,
progress has been made by extending
conventional constraint-based be-
havior representations (Sussman and
Steele 1980; Davis and Shrobe 1983)
to manipulate propositions repre-
senting signal values over time inter-
vals. For exmple, in XDE (Hamscher
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1991b), signal values are represented
using propositions limited to fixed
end points, but SIDIA (Guckenbiehl
and Schäfer-Richter 1990) and GMODS

(Holtzblatt, Neiberg, and Piazza 1991)
use episode-based temporal con-
straint propagators similar to TCP

(Williams 1986) extended in different
ways to maintain assumption-based
truth maintenance system (ATMS)
labels (de Kleer 1986) for their infer-
ences. The DIANA system (Dague, Jehl,
and Taillibert 1990) for diagnosing
analog circuits takes the approach of
propagating arrays of real intervals
indexed by discrete time points.

A practical difficulty encountered
in extending the standard model-
based approach with dynamic behav-
ior is that not only is the space of
generated diagnoses potentially com-
binatoric (as with static devices), but
the cost of predicting behavior also
increases dramatically, thus increas-
ing the cost of testing each diagnosis
for consistency (Hamscher 1991b). As
a result, using structural hierarchy to
coordinate the use of multiple levels
of behavioral abstraction becomes a
dominant theme in such systems.

The need to exploit the existence
of nonintermittent failure modes is
another theme in diagnosing dynam-
ic digital circuits. A nonintermittent
fault in a component results in the
component always producing the
same output given the same input.
Although relevant to static devices,
the ability to filter out diagnoses in-
volving intermittent faults turns out
to be an even more important con-
straint for dynamic devices (Hamsch-
er and Davis 1984). A number of
existing logic-based diagnosis sys-
tems do not exploit the diagnostic
power available if nonintermittency
is assumed, but they also fail to prop-
erly diagnose intermittent faults.
Raiman et al. (1991) demonstrate how
to incorporate a nonintermittency as-
sumption into SHERLOCK (de Kleer and
Williams 1989). The intuitions
behind this work are (1) the indexing
of all observations and inferences
with a discrete time stamp, (2) a gen-
eral nonintermittency axiom (the
same input result in the same output
at all times), and (3) nonintermittent
misbehavior modes for components
(for example, each component has
both an abnormal mode and a non-
intermittently abnormal mode). The
ATMS inference machinery underlying
SHERLOCK can represent such axioms
without difficulty, enabling SHERLOCK

to derive diagnoses that involve any

combination of component faults,
intermittent or otherwise. Empirical
results indicate that in large combi-
national digital circuits, the nonin-
termittency assumption filters out an
average of 20 percent of the diagnoses.

Another complication raised by
model-based diagnosis of dynamic
digital devices concerns the selection
of informative observations. The key
problem is that probing a signal
yields a complete history, but many
diagnoses predict only partial histories,
so that computing the probability of
an observation given a candidate
(hence the expected information
gain from making the observation) is
not well defined. Guckenbiehl and
Schäfer-Richter (1990) extended the
approach used in GDE (de Kleer and
Williams 1987) and XDE (Hamscher
1991b) by considering observations
of entire signal histories and filtering
the resulting probe suggestions on
the basis of circuit structure.

Continuous, Dynamic Devices

Although digital circuits are a popu-
lar domain for investigating model-
based diagnosis, continuous systems
are also an important research area.
One approach to the diagnosis of
continuous dynamic systems is repre-
sented by TEXSYS (Glass, Erickson, and
Swanson 1991), a monitoring and di-
agnosis system for BATBS, a prototype
thermal bus for space station Free-
dom. The thermal bus is a fluid
system with 30 major components,
most exhibiting nonlinear behavior,
along with 90 sensors for flow, pres-
sure, and temperature. There are sev-
eral good reasons for selecting a
model-based approach for such a
problem: The target device is an engi-
neered system consisting of identifi-
able components with limited
interactions, its architecture is ex-
pected to undergo continuous modi-
fication, reasoning could be
simplified by the expectation that no
multiple faults would occur, and real-

time operation seems feasible be-
cause of the relatively slow operation
of the target system. However, in
TEXSYS, the lack of computational
models for the individual compo-
nents and the overall system behav-
ior is a key issue. The resulting
hybrid architecture uses a structural
model of BATBS and qualitative behav-
ior models for the short-term behav-
ior of simple components (pipes, for
example), but most of the diagnostic
reasoning is performed by symptom-
fault association rules for each primi-
tive component and certain
aggregate components.

TEXSYS illustrates that better theories
of modeling continuous systems are
a prerequisite for progress in this
area. Progress in qualitative modeling
of physical systems (Weld and de
Kleer 1990) suggests that it might be
an appropriate approach. For example,
MIMIC (Dvorak and Kuipers 1989)
demonstrates how a continuous
system represented by qualitative dif-
ferential equations in QSIM (Kuipers
1986) could be used to simulate the
effects of hypothesized faults. Simi-
larly, Ng (1990) demonstrates how
QSIM can be used to detect inconsis-
tent diagnoses in the logic-based ap-
proach of Reiter (1987).

The MIDAS system for continuous
online monitoring of chemical plants
(Oyeleye, Finch, and Kramer 1990;
Rose and Kramer 1991) represents an
alternative to qualitative simulation.
QUAF, the qualitative reasoning com-
ponent of MIDAS, begins with a repre-
sentation of the target system as a set
of linear first-order differential equa-
tions. It is assumed that there is a
nominal steady state—an assumption
that usually holds in this domain—
and the equations are rewritten to
represent deviations from this steady
state. This is used to construct a
graph in which the nodes represent
qualitative variables ranging over 
{-,0,+}, and the arcs represent the
signs of the coefficients in the linear
equations. The QUAF algorithm then
performs an analysis of feedback ef-
fects in this graph, finding both the
initial and final response of each
variable to an initial disturbance. In
an empirical test on a complex
system of 147 variables and 185 arcs,
QUAF was able to find unambiguous
final disturbances for 85 percent of
107 initial disturbances correspond-
ing to system component malfunc-
tions. The results of QUAF ‘s feedback
analysis are incorporated into an
augmented graphic representation.
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MIDAS uses this augmented graph
representation to continuously moni-
tor the target system and update its
diagnoses. In the chemical plant
domain, the time scale of disturbance
propagation can range from minutes
to hours, so MIDAS records each devia-
tion of a sensor from normal as a sep-
arate event and updates its candidate
set in real time after each such event.
In the same empirical test mentioned
earlier, with 76 randomly selected
malfunctions, MIDAS ranked the
actual malfunction equal to or above
all other candidates in 82 percent of
the cases and included the actual
malfunction among the candidates
after 99 percent of all events.

Structural Failures

In general, logic-based diagnosis ap-
proaches correctly diagnose faults
that result in modifications of one or
more individual component behaviors
but cannot propose faults that result
in structural modifications. For ex-
ample, bridge faults—solder splashes
on digital circuit boards—result in
new connections between structural
components. One approach is to sep-
arately check for structural modifica-
tions with known behavioral effects
(Davis 1984). The number of poten-
tial bridge faults can be controlled by
checking only where solder splashes
are most likely to occur. A different
approach is to simply include poten-
tial bridge faults as insulator compo-
nents in the initial description of the
target device (Preist and Welham
1990). An extension of the digital cir-
cuit model to distinguish between
values that are transmitted and re-
ceived enables an abductive diagno-
sis engine to diagnose bridging faults
just as it diagnoses ordinary compo-
nent failures. However, one of the diffi-
culties with this approach is that in
the digital domain, the implementa-
tion of a strictly hierarchic design
can involve sharing components and
introducing physical adjacencies that
violate this strict hierarchy (Davis
1984; Hamscher 1988); this approach
appears to require the device descrip-
tion to be augmented with the be-
havioral effects of these physical
adjacencies.

Hierarchy and Abstraction

The importance of using multiple
levels of abstraction has been a recur-
rent theme throughout the history of
automated diagnosis and is particu-

larly relevant in the diagnosis of
complex devices. Mozetic (1990) em-
pirically demonstrates the familiar
claim that hierarchic diagnosis can
result in exponential speedup (that
is, diagnosis takes time logarithmic
in the time that would be required if
only the most detailed level of de-
scription were available). In the gen-
erate-and-test framework of KARDIO

(Bratko, Mozetic, and Lavrac 1989), a
simulation model of a heart is used
to both propose multiple-disorder di-
agnoses from symptoms and verify
that the sets of disorders account for
all symptoms. Models ordered with
respect to abstraction level are used
in the traditional fashion: Diagnoses
at the most abstract level are found
first and limit the proposal and veri-
fication of diagnoses at the next,
more concrete level. Mozetic (1990)
further formalizes general conditions
on adjacent levels of abstraction and
the use of partial evaluation to derive
the abstract models from the more
concrete. For example, in a digital
circuit setting, one would begin with
a description of the behavior of the
components of a Boolean gate using
real-valued voltages and currents and
use definitions of concepts such as
“high” and “low” to derive an ab-
stract behavioral description. Expo-
nential speedup was demonstrated in
empirical tests on a semiauto-
matically constructed four-level
heart model with 943 leaf diagnoses.

Broader Formulations 
of Diagnosis

Much AI diagnosis research has fo-
cused on computing the plausible di-
agnoses for a fixed set of symptoms.
However, human diagnosticians work
within a richer context. In particular,
they often perform diagnosis in con-
texts where therapeutic actions can
and should be taken even before de-
ciding on a final diagnosis.

Therapy can be defined as an inter-
leaved process of using both diagno-
sis and repair to suppress undesired

symptoms. In a logic-based frame-
work, it is possible to distinguish be-
tween components that are necessary
in any diagnosis as opposed to those
that are possible or irrelevant
(Friedrich, Gottlob, and Nejdl 990).
Diagnosis (defined as abduction on
theories consisting of horn clauses
describing the behavior of connected
components) is known to be NP-com-
plete (Bylander et al. 1991). However,
finding the components that are nec-
essarily part of a diagnosis is com-
putable in polynomial time, even
though determining whether a hy-
pothesis is included in a minimal di-
agnosis remains NP-complete. Thus, a
therapeutic procedure can run in
polynomial time, although it might
perform unnecessary repairs.

The emphasis on finding therapeutic
actions is particularly relevant when
working under real-time constraints.
The REACT system (Ash et al. 1990) as-
sumes a single underlying disorder in
the setting of an intensive care unit,
and a solution is characterized by
having an appropriate action ready at
a deadline, in this case, the point at
which intervention must be per-
formed to sustain the life of the pa-
tient. REACT represents the set of
alternative diagnoses as a subset-su-
perset lattice of diagnoses and moves
downward through this lattice in re-
sponse to accumulating evidence. In
REACT , each therapeutic action has a
fixed utility, and the mapping from
every competing set of alternative di-
agnoses to actions is made computa-
tionally trivial. As a result, REACT

always has some action that it can
recommend, albeit possibly subopti-
mal, given any stage of the diagnosis
process.

Summary
Dx-90 was a successor to the Workshop
on Model-Based Diagnosis held in
Paris in July 1989. The broadening of
the title and emphasis was motivated
by an explicit desire to foster interaction
among different communities inter-
ested in diagnosis. The 50 partici-
pants at Dx-90 were virtually
unanimous in their support for an-
other workshop to be held in 1991.
As a result, CISE Technologie Innova-
tive hosted Dx-91 on 14–16 October
1991 in Milan. Future workshops will
be held annually, alternating be-
tween North America and Europe.
The diversity of topics addressed at
Dx-90 (and within the AI diagnosis
community generally) illustrates the
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continued vigor of the area and its
potential for producing further
nuggets for AI in general. At the
moment, three of the themes dis-
cussed previously seem to present the
greatest potential for such progress.

First, diagnosis applications have
demonstrated the value of synthesizing
probabilistic and categorical knowl-
edge. Incorporating probabilistic in-
formation into a logically formulated
problem yields computational bene-
fits; exploiting knowledge about lo-
calized causal relationships organizes
and constrains representations of un-
certainty. As this synergy develops
further, it might form the basis of a
new knowledge system architecture
that is likely to supplant other archi-
tectures that are grounded strictly in
one paradigm or the other.

Second, diagnosis demonstrates
the centrality of modeling decisions
and the importance of ontological
commitment in programs that aspire
to solve realistic problems. Diagnos-
ing engineered artifacts with dynam-
ic and continuous behavior provides
a vivid illustration: Some issues of
(abstract) importance within the
logic-based and probabilistic
paradigms virtually fade to insignifi-
cance in comparison to the computa-
tional consequences of modeling
decisions such as making a steady-
state assumption for a continuous
system, representing the behavior of
a dynamic system with temporal ab-
stractions, or considering structural
failures that violate the design hierar-
chy of the target device. Diagnosis is
a good task with which to study the
interaction between such representa-
tional commitments and program
performance and motivates improve-
ments in techniques for representing
all types of complex physical systems.

Third, diagnostic problem solving
presents a realistic challenge and
demonstration vehicle for computa-
tional theories of nonmonotonic rea-
soning. The diagnosis of engineered
artifacts is of particular relevance.
Not only are assumptions about the
failures in the device defeasible, but
even the correct behavior of any en-
gineered system of realistic complexi-
ty can (and often must) be reasoned
about under many simplifying as-
sumptions, all defeasible in the face
of malfunctions. A flexible architec-
ture that exercises meaningful con-
trol over modeling assumptions
while it performs diagnosis would be
a significant achievement not only
for diagnosis but also for AI in general.
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choose to become. They might, in
fact, learn to communicate in several
natural languages. These remarkable
phenomena of language learning have
amazed most of us at one time or
another, and it is only natural that we
have tried to use computers to study
or even duplicate them—with only
partial success to report at this date.  

The AAAI Spring Symposium on
Machine Learning of Natural Language
and Ontology (MLNLO) provided an
opportunity to get together and dis-
cuss the partial successes and the
research challenges that lie ahead. It
was a rare opportunity because the
work has tended to be reported in
fragments, a thesis here or there, a
paper at an AI or computational lin-
guistics conference, another at a psy-
chology or linguistics or child language
conference or in a philosophy jour-
nal. The field is naturally highly mul-
tidisciplinary, and the interested
researchers all speak their own lan-
guages—not just natural languages
but specialized disciplinary dialects
laden with the theoretical constructs
and assumptions of each discipline.
Thus, this symposium provided a
forum for useful interchange of ideas.

“Learning of natural language” is a
simple-sounding phrase that covers a
number of phenomena. On the one
hand, there are various aspects of
language to be learned, such as the
sounds that are significant to a par-
ticular language (phonology), words
(lexicon) and their variations (mor-
phology), the structure of meaning-
ful utterances (syntax), and meaning
and its relation to the lexicon and
syntactic structure (semantics). On
the other hand, there are the differ-
ent components of learning: induc-
ing the data to be learned from raw
linguistic and nonlinguistic data;
somehow codifying these data into
an internalized, structured system
that can be used in an automatic
manner; and generalizing to be able
to deal with new input never heard
before and produce new output
never uttered before. The learning of
ontology, the understanding of what
exists in the world, is closely linked
with the learning of language.

At the symposium, 50 participants
discussed contributions in all these
areas, with 20 full-length presenta-
tions and a similar number of “adver-
tising spots” that allowed virtually all
groups some air time. It should also
be mentioned that a parallel sympo-
sium focused on connectionist natu-
ral language processing (CNLP) and

that nontraditional computing has
clearly exerted its influence on the
field of language learning. Not only
were a number of applications of
connectionist and genetic tech-
niques presented, but a joint final
session was held with CLNP.  

However, the main efforts are still
closely linked to contemporary AI
and linguistic theory. The field is
beginning to attack various practical
applications in areas where the
knowledge is rich enough to allow
modest learning, and it is providing
increasing challenge and support to
psycholinguistics and linguistics
research. In this respect, participants
spent time focused on a number of
special topics, such as the extent to
which language mechanisms are lan-
guage specific and linguistic proper-
ties are innate, the conditions under
which it is formally possible to learn
a language, the recognition of ungram-
matical sentences, the development
of the ability to use metaphors, the
modeling of second-language learn-
ing, and the question of how lexical
symbols become grounded in reality.
The treatments presented comple-
mented cognitive theory with com-
putational implementation.

At the end of the symposium, we
took time before the joint CNLP
panel to review the value of the sym-
posium and look to the future. It was
resolved that we instigate a regular
program of MLNLO events; a
newsletter; resource sharing (soft-
ware, texts, and so on); and further
symposia, workshops, and confer-
ences. The first such event was a
one-day workshop on natural lan-
guage learning to be held at the 1991
International Joint Conferences on
Artificial Intelligence in Sydney, Aus-
tralia, on August 25. As befitted its
shorter length, this workshop had a
tighter focus, with a major goal
being an analysis of proposed lan-
guage-learning models to allow 
comparing and contrasting of the
theoretical perspectives and the
hypotheses embodied; the imple-
mentation techniques and learning
algorithms; and the implications of
the virtues, failings, and results of
particular implementations and
modeling experiments.

The symposium participants also
felt that the working notes of the
MLNLO symposium were a landmark
volume worthy of further distribu-
tion. Thus, the working notes will
immediately be made available
(through the German AI Institute in

Kaiserslautern [DFKI D-91-09]) to a
wider audience in the form of a tech-
nical report and an edited book.
These publications will allow the
expanded presentation of selected
papers and, perhaps, additional invit-
ed papers from some who could not
attend. Information can be obtained
from powers@informatik.uni-kl.de or
from reeker@ida.org.

David Powers
University of Kaiserslautern

Larry Reeker
Institute of Defense Analyses
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