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This article is the second planned excerpt from the 
Handbook of Artificial Intelligence being compiled at Stan- 

ford University. This overview of the Handbook chapter on 
search, like the overview of natural language research we 
printed in the first issue, introduces the important ideas and 
techniques, which are discussed in detail later in the chapter. 
Cross-references to other articles in the Handbook have been 
removed -- terms discussed in more detail elsewhere are 
italicized. The author would like to note that this article draws 
on material generously made available by Nils Nilsson for use 
in the Handbook. 

In Artificial Intelligence, the terms problem solving and 
search refer to a large body of core ideas that deal with 
deduction, inference, planning, commonsense reasoning, 
theorem proving, and related processes. Applications of 
these general ideas are found in programs for natural 
language understanding, information retrieval, automatic 
programming, robotics, scene analysis, game playing, 
expert systems, and mathematical theorem proving. In 
this chapter of the Handbook we examine search as a tool 
for problem solving in a more limited area. Most of the 
examples considered are problems that are relatively easy 
to formalize. Some typical problems are: 

1. finding the solution to a puzzle, 

2. finding a proof for a theorem in logic or 
mathematics, 
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finding the shortest path connecting a set of 
nonequidistant points (the traveling-salesman 
problem), 

linding a sequence of moves that will win a 
game, or the best move to make at a given 
point in a game, 

finding a sequence of transformations that will 
solve a symbolic integration problem. 

This overview takes a general look at search in problem 
solving, indicating some connections with topics 
considered in other Handbook chapters. The remainder of 
the Search chapter is divided into three sections. The first 
describes the problem representations that form the basis 
of search techniques: state-space representations, 
problem-reduction representations, and game trees. The 
second section considers algorithms that use these 
representations. Blind search algorithms, which treat the 
search space syntactically, are contrasted with heuristic 
methods, which use information about the nature and 
structure of the problem domain to limit the search. 
Finally, the chapter reviews several well-known early 
programs based on search, together with some related 
planning programs. 

Components of Search Systems 
Problem-solving systems can usually be described in 
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terms of three main components. The first of these is a 
database, which describes both the current task-domain 
situation and the goal. The database can consist of a 
variety of different kinds of data structures including 
arrays, lists, sets of predicate calculus expressions, property 
list structures, and semantic networks. In a domain for 
automated theorem proving, for example, the current 
task-domain situation consists of assertions representing 
axioms, lemmas, and theorems already proved; the goal is 
an assertion representing the theorem to be proved. In 
information-retrieval applications, the current situation 
consists of a set of facts, and the goal is the query to be 
answered. In robot problem-solving, a current situation is 
a world mode/ consisting of statements describing the 
physical surroundings of the robot, and the goal is a 
description that is to be made true by a sequence of robot 
actions. 

The second component of problem-solving systems is a 
set of operators that are used to manipulate the database. 
Some examples of operators include: 

1. in theorem proving, rules of inference such as 
modus ponens and resolution; 

2. in chess, rules for moving chessmen; 

3. in symbolic integration, rules for simplifying 
the forms to be integrated, such as integration 
by parts or trigonometric substitution. 

Sometimes the set of operators consists of only a few 
general rules of inference that generate new assertions 
from existing ones. Usually it is more efficient to use a 
large number of very specialized operators that generate 
new assertions only from very specific existing ones. 

The third component of a problem-solving system is a 
control strategy for deciding what to do next--in particular, 
what operator to apply and where to apply it. Sometimes 
control is highly centralized, in a separate control 
executive that decides how problem-solving resources 
should be expended. Sometimes control is diffusely 
spread among the operators themselves. 

The choice of a control strategy affects the contents and 
organization of the database. In general, the object is to 
achieve the goal by applying an appropriate sequence of 
operators to an initial task-domain situation. Each 
application of an operator modifies the situation in some 
way. If several different operator sequences are worth 
considering, the representation often maintains data 
structures showing the effects on the task situation of each 
alternative sequence. Such a representation permits a 
control strategy that investigates various operator 
sequences in parallel or that alternates attention among a 
number of sequences that look relatively promising. 
Algorithms of this sort assume a database containing 
descriptions of multiple task-domain situations or states. It 

may be, however, that the description of a task-domain 
situation is too large for multiple versions to be stored 
explicitly; in this case, a backtracking control strategy may 
be used. A third approach is possible in some types of 
problems such as theorem proving, where the application 
of operators can add new assertions to the description of 
the task-domain situation but never can require the 
deletion of existing assertions. In this case, the database 
can describe a single, incrementally changing task-domain 
situation; multiple or alternative descriptions are 
unnecessary. 

Reasoning Forward and Reasoning 
Backward 
The application of operators to those structures in the 

database that describe the task-domain situation--to 
produce a modified situation--is often called reasoning 
&ward. The object is to bring the situation, or problem 
state, forward from its initial configuration to one 
satisfying a goal condition. For example, an initial 
situation might be the placement of chessmen on the 
board at the beginning of the game; the desired goal, any 
board configuration that is a checkmate; and the operators, 
rules for the legal moves in chess. 

An alternative strategy, reasoning backward, involves 
another type of operator, which is applied, not to a current 
task-domain situation, but to the goal. The goal 
statement, or problem statement, is converted to one or 
more subgoals that are (one hopes) easier to solve and 
whose solutions are suffllcient to solve the original 
problem. These subgoals may in turn be reduced to 
sub-subgoals, and so on, until each of them is accepted to 
be a trivial problem or its subproblems have been solved. 
For example, given an initial goal of integrating ll(cos2x) 
dx, and an operator permitting l/(cos x> to be rewritten as 
set x, one can work backward toward a restatement of the 
goal in a form whose solution is immediate: The integral 
of sec2x is tan x. 

The former approach is said to use forward reasoning and 
to be data-driven or bottom-up. The latter uses backward 
reasoning and is goal-directed or top-down. The distinction 
between forward and backward reasoning assumes that the 
current task-domain situation or state is distinct from the 
goal. If one chooses to say that a current state is the state 
of having a particular goal, the distinction naturally 
vanishes. 

Much human problem-solving behavior is observed to 
involve reasoning backward, and many artificial 
intelligence programs are based on this- general strategy. 
In addition, combinations of forward and backward 
reasoning are possible. One important AI technique 
involving forward and backward reasoning is called 
means-ends analysis; it involves comparing the current goal 
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with a current task-domain situation to extract a d/~ffrence 
between them. This difference is then used to index the 
(forward) operator most relevant to reducing the 
difference. If this especially relevant operator cannot be 
immediately applied to the present problem state, subgoals 
are set up to change the problem state so that the relevant 
operator can be applied. After these subgoals are solved, 
the relevant operator is applied and the resulting, modified 
situation becomes a new starting point from which to solve 
for the original goal. 

State Spaces and Problem Reduction 
A problem-solving system that uses forward reasoning 

and whose operators each work by producing a single new 
object--a new state--in the database is said to represent 
problems in a state-space representation. 

For backward reasoning, a distinction may be drawn 
between two cases. In one, each application of an operator 
to a problem yields exactly one new problem, whose size 
or difficulty is typically slightly less than that of the 
previous problem. Systems of this kind are also referred 
to, in this chapter, as employing state-space 
representations. Two instances of such representations, 
described in other articles, are the Logic Theorist program 
(Newell, Shaw, and Simon, 1963) and the 
backward-reasoning part of bidirectional search (Pohl, 
1971). 

A more complex kind of backward reasoning occurs if 
applying an operator may divide the problem into a set of 
subproblems, perhaps each significantly smaller than the 
original. An example would be an operator changing the 
problem of integrating 2/(x* - I> dx into the three 
subproblems of integrating l/(x - 1) dx, integrating -l/(x 
+ 1) dx, and adding the results. A system using this kind 
of backward reasoning, distinguished by the fact that its 
operators can change a single object into a conjunction of 
objects, will be said to employ a problem-reduction 
representation. 

There may or may not be constraints on the order in 
which the subproblems generated by a problem-reduction 
system can be solved. Suppose, for example, that the 
original problem is to integrate cf(x) + g(x) dx). Applying 
the obvious operator changes it to the new problem 
consisting of two integrations, f(x dx) and g(x dx). 
Depending on the representation, the new problem can be 
viewed as made up of either (a> two integration 
subproblems that can be solved in any order or (b) two 
integration subproblems plus the third subproblem of 
summing the integrals. In the latter case, the third task 
cannot be done until the first two have been completed. 

Besides the state-space and problem-reduction 
approaches, other variations on problem representation are 

possible. One is used in game-playing problems, which 
differ from most other problems by virtue of the presence 
of adversary moves. A game-playing problem must be 
represented in a way that takes into account the 
opponent’s possible moves as well as the player’s own. 
The usual representation is a game tree, which shares many 
features of a problem-reduction representation. Detailed 
examples of game-tree representations, as well as of 
state-space and problem-reduction representations, are 
given later in the chapter. Examples may also be found in 
Nilsson’s texts. 

Another variation is relevant to theorem-proving 
systems, many of which use forward reasoning and 
operators (rules of inference) that act on conjunctions of 
objects in the database. Although the representations 
discussed here assume that each operator takes only a 
single object as input, it is possible to define a 
theorem-proving representation that provides for 
multiple-input, single-output operators (see Kowalski, 
1972). 

Graph Representation 
In either a state-space or a problem-reduction 

representation, achieving the desired goal can be equated 
with finding an appropriate finite sequence of applications 
of available operators. While what one is primarily 
interested in--the goal situation or the sequence that leads 
to it--may depend on the problem, the term search can 
always be understood, without misleading consequences, 
as referring to the search for an appropriate operator 
sequence. 

Tree structures are commonly used in implementing 
control strategies for the search. In a state-space 
representation, a tree may be used to represent the set of 
problem states produced by operator applications. In such 
a representation, the root node of the tree represents the 
initial problem situation or state. Each of the new states 
that can be produced from this initial state by the 
application of just one operator is represented by a 
successor node of the root node. Subsequent operator 
applications produce successors of these nodes, and so on. 
Each operator application is represented by a directed arc 
of the tree. In general, the states are represented by a 
graph rather than by a tree, since there may be different 
paths from the root to any given node. Trees are an 
important special case, however, and it is usually easier to 
explain their use than that of graphs. 

Besides these ordinary trees and graphs, which are used 
for state-space representations, there are also specialized 
ones called AND/OR graphs that are used with 
problem-solving methods involving problem reduction. 
For problems in which the goal can be reduced to sets of 
subgoals, AND/OR graphs provide a means for keeping 
track of which subgoals have been attempted and which 
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combinations of subgoals are sufficient to achieve the 
original goal. 

combinatorial explosion. 

The Search Space 
The problem of producing a state that satisfies a goal 

condition can now be formulated as the problem of 
searching a graph to find a node whose associated state 
description satisfies the goal, Similarly, search based on a 
problem-reduction representation can be formulated as the 
search of an AND/OR graph. 

It should be noted that there is a distinction between the 
graph to be searched and the tree or graph that is 
constructed as the search proceeds. In the latter, nodes 
and arcs can be represented by explicit data structures; the 
only nodes included are those for which paths from the 
initial state have actually been discovered. This explicit 
graph, which grows as the search proceeds, will be referred 
to as a search graph or search tree. 

In contrast, the graph to be searched is ordinarily not 
explicit. It may be thought of as having one node for 
every state to which there is a path from the root. It may 
even be thought of, less commonly, as having one node 
for every state that can be described, whether or not a 
path to it exists. The implicit graph will be called the state 
space or, if generalized to cover non-state-space 
representations such as AND/OR graphs or game trees, 
the search space. Clearly, many problem domains (such as 
theorem proving) have an infinite search space, and the 
search space in others, though finite, is unimaginably 
large. Estimates of search-space size may be based on the 
total number of nodes (however defined) or on other 
measures. In chess, for example, the number of different 
complete plays of the average-length game has been 
estimated at lO’*O (Shannon, 1950, 1956), although the 
number of “good” games is much smaller (see Good, 
1968). Even for checkers, the size of the search space has 
been estimated at 104c (Samuel, 1963). 

Searching now becomes a problem of making just 
enough of the search space explicit in a search graph to 
contain a solution of the original goal. If the search space 
is a general graph, the search graph may be a subgraph, a 
subgraph that is also a tree, or a tree obtained by 
representing distinct paths to one search space node with 
duplicate search graph nodes. 

Limiting Search 
The critical problem of search is the amount of time and 

space necessary to find a solution. As the chess and 
checkers estimates suggest, exhaustive search is rarely 
feasible for nontrivial problems. Examining all sequences 
of n moves, for example, would require operating in a 
search space in which the number of nodes grows 
exponentially with n. Such a phenomenon is called a 

There are several complementary approaches to reducing 
the number of nodes that a search must examine. One 
important way is to recast the problem so that the size of 
the search space is reduced. A dramatic, if well-known, 
example is the mutilated chessboard problem: 

Suppose two diagonally opposite corner squares are removed 
from a standard 8 by 8 square chessboard Can 31 rectangular 
dominoes, each the size of exactly two squares, be so placed as 
to cover precisely the remaining board? (Raphael, 1976, p 31) 

If states are defined to be configurations of dominoes on 
the mutilated board, and an operator has the effect of 
placing a domino, the search space for this problem is very 
large. If, however, one observes that every domino placed 
must cover both a red square and a black one and that the 
squares removed are both of one color, the answer is 
immediate. Unfortunately, little theory exists about how 
to find good problem representations. Some of the sorts 
of things such a theory would need to take into account 
are explored by Amarel (19681, who gives a sequence of 
six representations for a single problem, each reducing the 
search space size by redefining the states and operators. 

A second aspect concerns search efficiency within a 
given search space. Several graph- and tree-searching 
methods have been developed, and these play an 
important role in the control of problem-solving processes. 
Of special interest are those graph-searching methods that 
use heuristic knowledge from the problem domain to help 
focus the search. In some types of problems, these 
heuristic search techniques can prevent a combinatorial 
explosion of possible solutions. Heuristic search is one of 
the key contributions of AI to efficient problem solving. 
Various theorems have been proved about the properties 
of search techniques, both those that do and those that do 
not use heuristic information. Briefly, it has been shown 
that certain types of search methods are guaranteed to find 
optimal solutions (when such exist). Some of these 
methods, under certain comparisons, have also been 
shown to find solutions with minimal search effort. 
Graph- and tree-searching algorithms, with and without 
the use of heuristic information, are discussed at length 
later in the chapter. 

A third approach addresses the question: Given one 
representation of a search problem, can a problem-solving 
system be programmed to find a better representation 
automatically? The question differs from that of the first 
approach to limiting search in that here it is the program, 
not the program designer, that is asked to find the 
improved representation. One start on answering the 
question was made in the STRIPS program (Fikes and 
Nilsson, 1971; Fikes, Hart, and Nilsson, 1972). STRIPS 
augments its initial set of operators by discovering, 
generalizing, and remembering macro-operators, composed 
of sequences of primitive operators, as it gains 
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problem-solving experience. Another idea was used in the 
ABSTRIPS program (Sacerdoti, 19741, which implements 
the idea of planning, in the sense of defining and solving 
problems in a search space from which unimportant details 
have been omitted. The details of the solution are filled in 
(by smaller searches within the more detailed space) only 
after a satisfactory outline of a solution, or plan, has been 
found. Planning is a major topic itself, discussed in 
Volume III of the Handbook. 

The Meaning of Heuristic and Heuristic 
Search 
Although the term heuristic has long been a key word in 

AI, its meaning has varied both among authors and over 
time. A brief review of the ways heuristic and heuristic 
search have been used may provide a useful warning 
against taking any single definition too seriously. 

As an adjective, the most frequently quoted dictionary 
definition for heuristic is “serving to discover.” As a noun, 
referring to an obscure branch of philosophy, the word 
meant the study of the methods and rules of discovery 
and invention (see Polya, 1957, p. 112). 

When the term came into use to describe AI techniques, 
some writers made a distinction between methods for 
discovering solutions and methods for producing them 
aigorithmically. Thus, Newell, Shaw, and Simon stated in 
1957: “A process that may solve a given problem, but 
offers no guarantees of doing so, is called a heuristic for 
that problem” (Newell, Shaw, and Simon, 1963, p. 114). 
But this meaning was not universally accepted. Minsky, 
for example, said in a 1961 paper: 

The adjective “heuristic,” as used here and widely in the 
literature, means telaied to b~ptovi~rg problem-sohi~~~ pm ftiltnat7ce, 

as a noun it is also used in regard to any method or tlick used to 
improve the efficiency of a problem-solving program Rut 
imperfect methods are not necessarily heuristic, nor vice versa 
Hence “heutistic” should not be legaIded as opposite to 
” foolproor’, this has caused some confusion in the literature 
(Minsky, 1963, p 407n ) 

These two definitions refer, though vaguely, to two 
different sets: devices that improve efficiency and devices 
that are not guaranteed. Feigenbaum and Feldman (1963) 
apparently limit heuristic to devices with both properties: 

A hmistic (hewistic tule, hewistic method) is a rule of thumb, 
strategy, trick, simplification, or any other kind of device which 
drastically limits search for solutions in large problem spaces 
Heuristics do not guarantee optimal solutions; in fact, they do 
not guarantee any solution at all; a// that can be said /b/ a u.yfitl 
hewistic is that it qff@ts solutions which ale god enough nest of the 
time (p 6; italics in original) 

Even this definition, however, does not always agree 
with common usage, because it lacks a historical 
dimension. A device originally introduced as a heuristic in 
Feigenbaum and Feldman’s sense may later be shown to 

guarantee an optimal solution after all. When this 
happens, the label heuristic may or may not be dropped. It 
has not been dropped, for example, with respect to the A* 
algorithm. Alpha-beta pruning, on the other hand, is no 
longer called a heuristic. (For descriptions of both 
devices, see Nilsson.) 

It should be noted that the definitions quoted above, 
ranging in time from 1957 to 1963, refer to heuristic rules, 
methods, and programs, but they do not use the term 
heuristic search. This composite term appears to have been 
first introduced in 1965 in a paper by Newell and Ernst, 
“The Search for Generality” (see Newell and Simon, 1972, 
p. 888). The paper presented a framework for comparing 
the methods used in problem-solving programs up to that 
time. The basic framework, there called heuristic search, 
was the one called state-space search in the present chapter. 
Blind search methods were included in the heuristic search 
paradigm. 

A similar meaning for heuristic search appears in Newell 
and Simon (1972, pp. 91-105). Again, no contrast is 
drawn between heuristic search and blind search; rather, 
heuristic search is distinguished from a problem-solving 
method called generate and test. The difference between 
the two is that the latter simply generates elements of the 
search space (i.e., states) and tests each in turn until it 
finds one satisfying the goal condition; whereas in heuristic 
search the order of generation can depend both on 
information gained in previous tests and on the 
characteristics of the goal. But the Newell and Simon 
distinction is not a hard and fast one. By the time of their 
1976 Turing Lecture, they seem to have collapsed the two 
methods into one: 

Heuristic Search A second law of qualitative structure for AI 
is that symbol systems solve problems by generating potential 
solutions and testing them, that is, by searching (Newell and 
Simon, 1976, p 126) 

In the present chapter, the meaning attached to heuristic 
search stems not from Newell and Simon but from 
Nilsson, whose 1971 book provided the most detailed and 
influential treatment of the subject that had yet appeared 
(see also Nilsson, 1980). For Nilsson, the distinction 
between heuristic search and blind search is the important 
one. Blind search corresponds approximately to the 
systematic generation and testing of search-space 
elements, but it operates within a formalism that leaves 
room for additional information about the specific problem 
domain to be introduced, rather than excluding it by 
definition. If such information, going beyond that needed 
merely to formulate a class of problems as search 
problems, is in fact introduced, it may be possible to 
restrict search drastically. Whether or not the restriction is 
foolproof, the search is then called heuristic rather than 
blind. n 

(teferences continued page 23) 
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For Decsystem-20, Tops-20, Vax, and VMS: 
Consult your friendly local DEC salesperson 
Interlisp is available through DECUS. 

For Interlisp on VAX: 
Mel Pirtle 
University of Southern California 
Information Sciences Institute 
4676 Admiralty Way 
Marina del Rey, California 90291 
(PIRTLE @ ISIB) 

For Maclisp and NIL: 
Jon L. White 
MIT Laboratory for Computer Science 
545 Technology Square 
Cambridge, Mass. 02139 
(JONL @ MIT-MC) 

For Eunice: 
David Kashtan (technical questions) 
Chuck Untulis (administrative questions) 
SRI International 
Computer Resources 
333 Ravenswood Ave. 
Menlo Park, California 94025 
(KASHTAN @ SRI-KL, UNTULIS @ SRI-KL) 

For Lisp Machines: 
Russell Nofsker Steve Wyle 
Symbolics, Incorporated Lisp Machines, Incorporated 
605 Hightree Road 163 N. Mansfield Ave 
Santa Monica, Ca. 90402 Los Angeles, Ca 90036 
(213) 459-6040 (213) 938-8888 

For PERQs: 
Three Rivers Computer Corporation 
720 Gross St. 
Pittsburgh, Pa 15224 
(412) 621-6250 

For Jericho: 
Jim Calvin 
Bolt, Beranek, and Newman 
50 Moulton St 
Cambridge, Mass. 02138 
(617) 491-1850 x4615 
CALVIN BBN-TENEXG 

For Spice: 
Scott E Fahlman 
Department of Computer Science 
Carnegie-Mellon University 
Schenley Park 
Pittsburgh, Pa 15213 
(FAHLMAN @ CMUA) 
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