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A wide variety of mathematical and
statistical software tools are available
today, and the list grows daily. Means
for representing and storing data and
scientific information are likewise
increasing, from sophisticated
database and knowledge base tech-
nologies to high-speed, high-resolu-
tion graphics. Imagine a computing
environment that couples all of these
in a user-friendly way, using the best
mathematical, computing, and AI
technology to allow a scientist to
quickly and easily perform all types
of modeling and simulation by com-
puter to assist in research. Imagine
also that this computing environment
is implemented in such a way that
the human-computer interface is set
up to resemble the laboratory or field
environment in which real data might
actually be obtained. Because of the
range of computing capabilities at the
scientist’s disposal and the ease with
which these capabilities can be
brought to bear on a research prob-
lem, a computing environment of this
sort might be called an artificial labo-
ratory.

The artificial laboratory is, there-
fore, a computing environment that
not only simulates the laboratory
environment but also allows analysis
of the data. Most likely, the laborato-
ry environment that is simulated
would be one which is relatively sta-
ble or mature. Research using cus-
tom-designed instruments, for exam-
ple, might make it difficult to say
with confidence that the measure-
ment portion of the scientist–instru-
ment–object-of-study system can be
assumed to not influence the data
which are obtained. Cutting-edge
research might require frequent
changes to computer programs used
for analysis. An artificial laboratory is
more suited for those situations
where the laboratory technology is
mature enough to permit focus only
on the object of study.

ne of the major characteristics
of modern science is that theo-

ry and experimentation drive one
another in a cyclic process of progres-
sive refinement, leading to new con-
clusions about the world around us.
Theory guides and directs the course
of experimentation, and experimental
results subsequently suggest ways in
which theory must be modified.
Some theories can, in fact, be discard-
ed altogether. Over the past 30 years,
computer modeling and simulation,
analogous to theory and experimenta-
tion, has frequently guided scientific
investigation.

John von Neumann was one of the
first to pioneer and promote the use
of computers to numerically study
the behavior of systems and use the
results as a “heuristic guide to theo-
rizing” (Burks 1966, p. 3). The solu-
tions provided by the computer can
serve as “an aid to discovering useful
concepts, broad principles, and gener-
al theories.” Certainly, the use of
computers in modeling and simula-
tion of static and dynamic systems
has become a significant part of scien-
tific endeavor. Computer modeling is
an extremely powerful way of work-
ing with representations that help us
better understand the systems we
study. We can guess that modeling
and simulation will become ever
more advanced in years to come, but
where does the future of computers in
science lie?

As rapidly as computer technology
is developing, extrapolations from the
present are numerous and dangerous.
Although we might successfully
guess that parallel processing and
supercomputing will be cheaper,
faster, and more widely accessible,
undoubtedly many aspects of future
computing would amaze us if we
could use a crystal ball and see them.
Let us consider for a moment, though,
one direction that the use of comput-
ers in science might take.

An artificial laboratory is a hypothetical
computing environment of the future that
would integrate mathematical and statis-

tical tools with AI methods to assist in
computer modeling and simulation. An

integrated approach of this kind has great
potential for accelerating the rate of 

scientific discovery.
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The kinds of tasks that could be
performed in an artificial laboratory
range from testing simple thought
experiments and performing class-
room demonstrations of scientific
concepts to finding potentially fruit-
ful and potentially barren avenues of
further investigation with the aid of
the computer.

Just as forming hypotheses and test-
ing them through experimentation are
important to scientific progress, the
modeling process is an important
extension of the scientific method.
The central paradigm in the use of
artificial laboratories is that a model
is another way to organize and repre-
sent knowledge. Artificial laboratories
would assist a scientist in such tasks
as the following:
• Developing and representing a
model (structurally, graphically,
mathematically)
• Testing the model (perhaps by com-
paring the results of simulated experi-
ments with data from real experi-
ments)
• Refining the model (by suggesting
changes that would make the model
more reasonably represent reality)

Components of an 
Artificial Laboratory

The three major parts of an artificial
laboratory (figure 1) are (1) a mathe-
matical and statistical tool kit and
graphics procedures for displaying
results; (2) a scientific knowledge sys-
tem, with inference engine and
knowledge base; and (3) an intelligent
user interface or front end to the sys-
tem.

The Tool Kit

The mathematical and statistical tool
kit that would be needed for an
artificial laboratory cannot simply be
a lump of subroutines or procedures.
Currently, for example, the IMSL For-
tran subroutine library (IMSL 1987)
provides a wide range of
mathematical and statistical tools,
but Fortran programs must be written
to call these subroutines. Likewise,
the mathematical and statistical pro-
cedures found in SAS (1985) software
products provide the user with a host
of useful tools, but some amount of
SAS programming is necessary to use
these tools. In the realm of tools for

computational chemistry available to
the public at nominal charge, the
Quantum Chemistry Program
Exchange provides an extensive vari-
ety of actual programs ready for use;
the disadvantage with these programs
is the lack of cohesiveness among the
programs because they all come from
different sources.

The tool kit for an artificial labora-
tory must be designed so that using it
requires little, if any, actual program-
ming. This effort could be approached
in a variety of different ways, includ-
ing using menu screens, automatic
program generators, and extremely
high-level programming languages.
Programming as we know it, using
third or fourth generation languages,
would certainly inhibit the use of an
artificial laboratory.

Graphics procedures must have a
great deal of flexibility because scien-
tists need to see data and information
presented in many different ways.
Graphs of data must allow for three
dimensions, not just two, and we
should be able to rotate a three-
dimensional graph in any direction to
get a different look at the data. Geo-
metric diagrams of all kinds should
also be possible in three dimensions,
with dynamic control over the view-
ing possible. As with the calculations
tool kit, graphics procedures should
be so easy to use that they do not
require extensive setup and experi-
mentation to get something to look
right. A scientist’s time should be
spent on scientific problems, not
figuring out how to get the computer
to make something work. An
enormous amount of work is current-
ly under way to make visualization in
scientific computing both powerful
and convenient (McCormick, DeFan-
ti, and Brown 1987; Wolff 1988). Why
is visualization so important? “The
goal of visualization is to leverage
existing scientific methods by provid-
ing new scientific insight through
visual methods. . . . Researchers want
to steer calculations in close-to-real
time; they want to be able to change
parameters, resolution, or representa-
tion, and see the effects. They want to
drive the scientific discovery process;
they want to interact with their
data.” (McCormick, DeFanti, and
Brown 1987, pp. 3, 5).

Figure 1. Primary Features of an Artificial Laboratory.
The tool kit provides tools for computation and visualization of results. The knowledge

system includes a knowledge base of basic scientific concepts and advice on using the
tool kit and an inference engine that supports modeling. The user interface is a highly

sophisticated subsystem which creates an artificial working environment, resembling
that of an actual laboratory, for the scientist.
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The Knowledge System

Artificial laboratories would be
designed around the particular field
and applications in which they would
be used. A scientific knowledge base
of key concepts important to a partic-
ular field would be a critical part of
any artificial laboratory. For an
artificial physics laboratory, the
knowledge base would include basic
laws of physics, general physical prin-
ciples, and key mathematical equa-
tions. For an artificial chemistry labo-
ratory, the knowledge base would
include basic concepts about chemical
interactions, kinetics and thermody-
namics, the periodic table, and so on.
Knowledge bases for any laboratory
might also include concepts from gen-
eral systems theory (Lacy 1986)
regarding types of models and interac-
tions between physical units.

The knowledge base must also con-
tain information regarding the appro-
priate use of tools in the tool kit. For
example, the knowledge base for an
artificial chemical laboratory should
include a recommendation to use
Gear’s method for solving a system of
differential equations if a kinetic
model uses rate constants that span
large differences in magnitude.
Progress in research on expert systems
that assist in simulation was reported
at a recent conference.1 

A scientific knowledge base would
not be useful without an inference
engine, however, to make use of the
available knowledge. If the artificial
laboratory maintains a database or
knowledge base of models and the
results obtained with each, including
how the results were tested and what
the outcome of the tests was, the sys-
tem might be designed to suggest
modifications to test. The artificial
laboratory might, therefore, serve as a
valuable scientific assistant.

An intelligent physiologic modeling
system used for educational purposes
was developed by Robert Kunstaetter
(1987) at the Massachusetts Institute
of Technology Laboratory for Com-
puter Science. This system is frame
based and has a deep knowledge of
respiratory physiology. The admitted-
ly gross simplification of physiologi-
cal concepts embodied in the system
limits its usefulness to helping medi-

cal students learn qualitative relation-
ships revealed by perturbing various
models. Nevertheless, this system is
an impressive example of coupling AI
technology with modeling and simu-
lation.

Choosing the right level of abstrac-
tion would be important in designing
an artificial laboratory. A high level of
abstraction might be necessary for
most artificial laboratories because
working with abstraction on the level
of first principles can be cumbersome,
or the first principles might not be
clearly understood or well defined.
Generally, as one moves up the hierar-
chy from physics to chemistry and
biology, for example, one moves fur-
ther from wanting or being able to use
the most fundamental physical princi-
ples.

It might be possible to establish a
framework for developing the proper
level of abstraction using general sys-
tems theory. Systems theory has been
shown to provide a conceptual frame-
work for computational chemistry
(Lacy 1986). Similar frameworks could
be conceived for other fields. Caution
is required, however, because too high
a level of abstraction would lead to an
artificial laboratory so generalized
that its use in particular fields would
require extensive customization. A
balance is necessary between too high
a level of abstraction and too low a
level.

Finding the proper level of abstrac-
tion might also be possible using
developments in the field of qualita-
tive reasoning and the closely related
field of model-based reasoning. Quali-
tative reasoning involves the use of
models to study a problem without
requiring quantization of the parame-
ters defining the model. Forbus (1988)
argues that qualitative physics is cen-
tral to intelligent computer-aided
engineering “because it helps capture
the commonsense understanding of
the world that is the foundation of
engineering knowledge” (Forbus 1988,
p. 27) Could qualitative physics pro-
vide the level of abstraction for an
artificial physics or chemistry labora-
tory? Could qualitative chemistry pro-
vide the level of abstraction for an
artificial chemistry or biology labora-
tory? The tool kit for an artificial lab-

oratory must include libraries of
numeric and statistical tools. If quali-
tative reasoning as an approach has
utility in providing the right level of
abstraction for an artificial laboratory,
libraries of appropriate qualitative
models would also form part of the
knowledge system.

The User Interface

I have described the importance of the
tool kit and the knowledge base and
inference engine. The usefulness of an
artificial laboratory would greatly
depend as well on an intelligent inter-
face between the scientist and the lab-
oratory. The interaction that occurs at
this interface must be rapid and direct
and easy to understand. The scientist
should not be required to do computer
programming. The scientist should
not have to spend time wading
through user manuals and lists of
error codes.

Graphic implementations of the
human-computer interface could be
one of the most important advances
in computer science. Today, we have
many icon-based implementations
that facilitate the use of a computer.
For example, it is not difficult to
imagine moving test tube icons
around on a screen to direct an
artificial chemical laboratory to simu-
late a reaction between two chemical
species. In a generalized scheme for
modeling a wide variety of systems
(physical, biological, or socioeconom-
ic), the STELLA computer modeling
package uses icons for stocks, flows
between stocks, factors influencing
flows, and logical connectors linking
stocks with factors or flows (Rowe
1988).

The direction in which develop-
ment of human-computer interfaces
for an artificial laboratory might fol-
low might be similar to that pursued
by Randall B. Smith (1986, 1987) at
Xerox Palo Alto Research Center.
Smith developed a system called the
alternate reality kit (ARK). ARK is an
object-oriented environment based on
SMALLTALK-80 that can be used to
create animated interactive systems.
Everything used in ARK is represent-
ed as an actual physical object. In a
simulation of simple physical con-
cepts, for example, laws of physics
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such as gravity and motion are turned
on or off with switches shown on the
computer screen (figure 2). The utility
of ARK lies both in its potential for
teaching through simulation and in
its use as a user-interface kit.

The development of human-com-
puter interfaces known as artificial
realities (Foley 1987, National Aero-
nautics and Space Administration
1988) might have a profound impact
on the development of an artificial
laboratory. The virtual workstation
concept developed by National Aero-
nautics and Space Administration
engineer Michael McGreevy uses
three-dimensional graphics and sound
to present artificial realities. A head-
mounted monitor that covers both
eyes presents images on small screens
which are viewed stereoscopically
with special optics; a fiber optic glove
(DataGlove, which was developed and
is manufactured by VPL Research,
Inc.) that records hand and finger
movements gives the user a virtual
hand to interact with menus shown

on the display screen (figures 3a, 3b).
The many possible uses for the virtual
workstation include simulation in sci-
ence and engineering; applications
include creating virtual wind tunnels
for research involving computational
fluid dynamics and exploring the
structure of macromolecules by
touch.

Interfacing with 
Real Laboratories

Artificial laboratories would augment
real laboratories, not replace them.
Artificial laboratories would always
require input from real laboratories,
namely, data against which to com-
pare simulated results. In fact, if
artificial laboratories become a reality,
we might wish to directly interface
with real laboratories.

A data manager and a control man-
ager are two possible interfaces
between an artificial laboratory and a
real laboratory (figure 4). These inter-

faces manage the flow of data from
the real laboratory to the artificial lab-
oratory and control of the real labora-
tory by the artificial laboratory,
respectively. The data manager sub-
system is responsible for data acquisi-
tion and preprocessing and database
management; it also permits the
artificial laboratory to work with
either real-time data or stored data.
The control manager comes into play
when it is necessary to modify experi-
mental conditions to acquire different
data. Under the direction of the
artificial laboratory, the control man-
ager facilitates control of the real lab-
oratory by sending messages to robot-
ic devices or scientific instruments.
Intense effort now under way to
develop computer-integrated laborato-
ry automation might help the devel-
opment of a control interface between
an artificial laboratory and a real labo-
ratory.

Summary

A computing environment that inte-
grates computational tools with
artificial intelligence methods could
be of great assistance in computer
modeling and simulation in scientific
research. In particular, new develop-
ments in constructing human-com-
puter interfaces could result in an
artificial reality for this environment,
thereby suggesting the name artificial
laboratory. The advantages of using
this environment include higher pro-
ductivity and creativity by avoiding
direct programming and exploring
problems in a manner that more
closely resembles investigation in an
ordinary laboratory environment.

Artificial laboratories must be man-
aged with responsibility, however.
Simulations do not produce data; they
produce numbers that can mimic real-
world data in some fashion. The
results of simulations must be given
careful scrutiny and not be blindly
accepted. However, the ease with
which results from simulations can be
abused is not so much a drawback of
artificial laboratories as it is a point of
caution in scientific modeling and
simulation. In addition, although
computer simulation is under serious
consideration as a limited alternative
to the use of animals in scientific

Figure 2. Typical Screen Display from the ARK System.
ARK provides a unique interface with the user. Abstractions such as the laws of nature
are represented as physical objects, thereby enabling a hands-on, exploratory interaction
between the user and the computer. The mouse-controlled hand icon is used to pick up,
move, or throw any object on the screen. In this screen, the law of gravity is represented
as an actual switch that can be turned on or off or adjusted to a desired value; the user
in this image is trying to throw a moon into orbit around a planet.

Adapted from a Photo by Randall B. Smith, Xerox Palo Alto Research Center.
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research, artificial laboratories or
computer modeling should not be
used to replace routine laboratory
experiments whose purpose is primar-
ily educational (for example, in a high
school chemistry class). The learning
acquired through hands-on experience
will probably never be perfectly dupli-
cated by an artificial laboratory.

Laboratory investigation of scien-
tific problems has been going on for a
few hundred years. As artificial labo-
ratories are developed, we will want
to interface them with real laborato-
ries. When this event finally happens,
we will have the ultimate laboratory,
a fully integrated working environ-
ment specifically designed to tackle
scientific problems in a way never
before experienced.
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