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A n AI lab is like a greenhouse. 
Researchers develop new ideas 

and plant them in programs. The pro- 
grams are cultivated, hybridized, nur- 
tured. The weaker ideas die out. The 
stronger ideas are grafted onto new 
stock and serve as the basis of hearty 
new strains. 

At Yale, there has been a traditional 
summer seminar series at which grad- 
uate students present their unprepos- 
sessing theories to the vocal and criti- 
cal review of their colleagues. The 
tenor of these discussions is conveyed 
by their title: “The Friday Fights.” 
Such occasions provide the Yale 
researcher opportunities for both 
pruning and growth. Cultivation by 
candor is the standard. This level of 
peer review has also been experienced 
by colloquium speakers. Many visi- 
tors to the lab were unprepared for the 
onslaught. By now though, Yale’s rep- 
utation for open debate has led many 
speakers to agree to disagree. 

Ideas and theories grow through 
this process of natural selection. The 
best are represented here, in this col- 
lection of technical reports from the 
past dozen years. These reports are 
our harvest-the results of twelve 
intense years of work by a large crop 
of researchers. 

In the present article, we survey 
this collection, which is now made 
available on microfiche through Sci- 
entific Datalink. The work falls into 
several areas. 
l Cognitive Modelling This category 
is quite broad, and is used here to 
describe the work of Roger Schank 
and his students. It includes natural 
language processing, models of human 
memory organization, learning, and 
explanation. 
l Spatial and Temporal Reasoning. 
Drew McDermott and his students 

have considered a range of topics 
related to reasoning including non- 
monotonic logic, planning with 
incomplete knowledge, and reasoning 
about space and time. 
l Cognition and Programming. Elliot 
Soloway, and David Barstow before 
him, have undertaken a scientific 
inquiry focused on the task of pro- 
gramming itself. How could a com- 
puter automatically write programs? 
How do people learn to program? 
How can a computer program help 
people learn to write better programs? 
l Cognitive Science All the work at 
the Yale AI Project could be termed 
part of cognitive science. We have had 
a long association with members of 
the Yale Psychology Department, 
especially Robert Abelson and John 
Black. Psychologists-faculty, visi- 
tors, graduate students-have actively 
contributed to the AI research efforts, 
testing and refining theories of human 
cognitive processing. 

Cognitive Modelling 
The Yale AI Project began in 1974 
when Roger Schank and Chris Ries- 
beck came from the Stanford AI Lab, 
via the Istituto per gli Studi Semantici 
e Cognitivi in Castagnola, Switzer- 
land, to join the Yale Computer Sci- 
ence Department. 

The faculty at Yale, especially Alan 
Perlis and Martin Schultz, were very 
supportive of the establishment of an 
AI lab. Robert Abelson, in the Psy- 
chology Department, had a long- 
standing interest in AI and had 
already begun collaboration with 
Schank Graduate students were 
quickly drawn into the work. Jim 
Meehan, Wendy Lehnert, Rich 
Cullingford, and Gerry DeJong were 
among the first students involved. 
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The main research tool was a DEC 
PDP-10, equipped with custom-built 
Sugarman CRT’s and Yale’s own full- 
screen “E” editor, courtesy of Ned 
Irons. 

The focus of the initial research was 
natural language processing. At Stan- 
ford, Schank had developed the 
MARGIE system (Schank 1975) with 
his students Goldman, Rieger, and 
Riesbeck. MARGIE was used to 
demonstrate the effectiveness of con- 
ceptual dependency (CD) as a lan- 
guage-free, canonical meaning repre- 
sentation MARGIE would read an 
English sentence, using Riesbeck’s 
expectation-based parser to build a 
CD form which represented the 
meaning of the sentence MARGIE 
would then make inferences based on 
the meaning of the input sentence 
using Rieger’s inferencing program. 
Finally, the results of the initial parse, 
as well as the inferences, could be 
converted back into natural language 
with Goldman’s generator program, 
producing paraphrases in either 
English or German. 

The MARGIE program, though con- 
sidered a toy system, was an effective 
and productive model for the ensuing 
research projects. There were several 
salient characteristics of MARGIE 
that have developed as themes in Yale 
cognitive modelling research through 
to the present. 
l Task Orientation. An AI program 
should address a specific, real-world 
task. The program should model 
something that a person actually does, 
rather than an artificial abstraction of 
intelligent behavior. MARGIE’s tasks 
included reading, paraphrase, and 
translation. Subsequent programs 
have created stories, answered ques- 
tions, summarized stories, skimmed 
stories, professed opinions, related old 
stories to new ones, and engaged in 
conversations. There are several rea- 
sons for choosing real tasks. First, 
these tasks are in the realm of the 
possible-people provide an existence 
proof. Second, the researcher has tan- 
gible ways of assessing the results of 
the program through comparisons 
with human performance Third, the 
researcher has a ready supply of data. 
It is preferable for a program to use 
real data instead of canned examples. 

In the latter case, even the most 
objective researcher may find himself 
tailoring the examples to just those 
cases which he knows the program 
can handle. Finally, the experimental 
paradigm implicit in this approach 
requires the researcher to build an 
actual computer program. The pro- 
gram is the crucible in which theories 
are tested and molded. Without a pro- 
gram, many of the unstated supposi- 
tions in a theory are never revealed or 
examined. In writing a program, the 
researcher must confront these 
assumptions. 
. Psychological Process Model. The 
MARGIE program was a cognitive 
simulation. Not only did it try to per- 
form tasks that people perform, but it 
tried to simulate the manner in which 
the human mind works. By compari- 
son, a computer chess program which 
exhaustively searches ahead several 
moves may be able to play a fine game 
of chess, but it is unrealistic to con- 
sider such a program a model of the 
way in which a person plays chess. 
The underlying process model in 
MARGIE comprised three stages: 
parsing, inferencing, and generation. 
This basic triad has been the founda- 
tion for the subsequent generations of 
programs. The primary focus has been 
on integrating the three processes to 
allow more interaction with memory. 
In recent years, the role of memory 
has transcended the specific natural 
language concerns and has come to 
encompass learning and explanation 
processes. This development can be 
viewed as a natural evolution of the 
original central inference process. 
. Canonical Representation of 
Knowledge. The heart of the MARGIE 
system was the conceptual dependen- 
cy knowledge representation system. 
CD provided a means of representing 
actions and states in a canonical, lan- 
guage independent fashion. A concept 
represented using the dozen CD prim- 
itives might be expressed in any num- 
ber of ways in any number of lan- 
guages. More specifically, CD 
addressed a broad range of problems 
associated with meaning in language. 

Translation, Synonymy and Para- 
phrase CD insured an identical rep- 
resentation for two different sen- 
tences having the same meaning. 

Inference.CD included a process 
model for determining the implicit 
meaning of a sentence. 
Ambiguity. The same word can 
have a variety of meanings. (“John 
gave Mary a kiss.” versus “John gave 
Mary a book.“) The CD paradigm 
provided a means of distinguishing 
among multiple word senses. 
As the domain of concepts expand- 

ed in the subsequent years, new types 
of knowledge representations were 
developed These included primitives 
for social acts, attitudes, and objects, 
as well as larger knowledge structures 
built from these primitives, such as 
scripts, plans, goals, memory organi- 
zation packets (MOPS), thematic orga- 
nization packets (TOPS), and explana- 
tion patterns (XPs). 

One additional feature of the 
MARGIE system that carried over to 
Yale researchers was the habit of giv- 
ing programs names of people. From 
SAM and ELI through BORIS and 
CYRUS, this convention has been fre- 
quently adopted. 

Scripts, Plans, Goals, 
and Understanding 

The Yale AI research reports begin 
with SAM, the Script Applier Mecha- 
nism, the first computer program to 
understand stories in context. 
MARGIE had been able to understand 
simple sentences in terms of the 
actions or states which they repre- 
sented. However, connected text-a 
story-could cause a problem if the 
series of actions and states could not 
be connected through simple infer- 
ences. How can a program infer con- 
text? Two brief stories illustrate the 
problem. 

John picked up a rock. John threw 
the rock at Mary. The rock hit 
Mary. 
In this first case, the actions are 

causally linked. A reader can infer the 
connections from one action to anoth- 
er and build a causal chain based on 
the inferences associated with each 
action. For example, picking up an 
object can enable a person to propel 
that object. 

John went to a restaurant. He 
ordered a lobster. He paid the 
check and left. 
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This second story demonstrates 
that some causal chains are derived 
from context. In this case, the reader 
can infer a lot about what John did at 
the restaurant simply because the 
reader knows a lot about restaurants. 
For example, we presume that John 
ate something-probably a lobster. 
The story, though, does not mention 
eating at all. However, the reader 
knows that people usually go to 
restaurants to eat. This type of knowl- 
edge about stereotypical events has 
been termed a script Scripts were 
originally proposed by Schank and 
Abelson (1975, 1977) for story under- 
standing and are similar to the frame 
knowledge structure proposed by 
Minsky (1975). 

Scripts comprise a set of roles, 
props, goals, locations, and events. In 
the restaurant script, notated as 
$RESTAURANT, the roles might 
include customer, waitress, and cook; 
the props could be a menu, table, and 
silverware; the locations could be the 
bar, dining area, and kitchen; and the 
events would include arriving, seat- 
ing, ordering, and so forth. Other 
script-based situations would be tak- 
ing a plane, attending a concert, buy- 
ing a car, or going to the dentist. 
These are situations in which people 
have sets of expectations based on 
numerous previous episodes. The con- 
stituent events of these episodes are 
sufficiently similar to allow a person 
[or a program) to make inferences 
when details are not explicitly stated. 

SAM was a test of the script knowl- 
edge structure. After development 
using simple stories about restau- 
rants, SAM was applied to real news- 
paper stories using scripts describing 
events such as automobile accidents. 
Like MARGIE, the SAM project was a 
group effort. SAM’s parser was ELI 
[English Language Interpreter], which 
was a revised version of Riesbeck’s 
original parser. Anatole Gershman 
developed a method for parsing com- 
plex noun-groups (for example, “Frank 
Miller, 32, of 593 Foxon Rd., the driv- 
er,“). Rich Cullingford built the actual 
script applier which was the core of 
the system. Wendy Lehnert developed 
a conceptually-based question- 
answering system that allowed the 
program to respond to queries about 
the content of the stories. Rick 

Granger built a parsing module that 
could infer the meaning of unknown 
words from context. 

SAM had a small repertoire of 
scripts, and would read news stories in 
great detail, looking for every bit of 
meaning it could find. Another 
approach to reading news stories was 
explored by Gerald DeJong in FRUMP 
[Fast Reading Understanding Memory 
Program). FRUMP was connected 

was not about earthquakes at all, but 
concerned the tragic shooting death of 
the Mayor of San Francisco. FRUMP 
had taken the lead sentence literally: 
“San Francisco was shaken by the 
death of Mayor Moscone and City 
Councilman Harvey Milk.” The figu- 
rative use of language remains an open 
question for researchers in natural lan- 
guage processing. 

In addition to looking at scripts, 

An AIprogram should address a specific, real-world 
task. The program should model something that a 

person actually does, rather than an artificial 
abstraction of intelligent behavior. 

directly to the United Press Interna- 
tional news wire and could skim news 
stories in dozens of different domains, 
and produce summaries in several lan- 
guages. On the DEC-20 (which by 
1978 had replaced the PDP-101, 
FRUMP could process an average 
news story in under ten seconds. 
FRUMP’s domain knowledge was rep- 
resented in sketchy scripts that lacked 
the detail of SAM’s scripts, but provid- 
ed a feasible method for capturing the 
salient details of news stories. 
FRUMP’s world knowledge comprised 
a range of news events including natu- 
ral disasters, such as floods and earth- 
quakes, international incidents, such 
as breaking diplomatic relations or 
armed conflict, and deaths of famous 
people. 

It is important to note that the 
scripts in FRUMP and SAM were not 
triggered by keywords like “earth- 
quake” or “death,” but by the concepts 
that embody the underlying meaning. 
This point can be illustrated by an 
error FRUMP made in processing a 
certain story. From a UP1 wire dis- 
patch, FRUMP produced the summary 
“There was an earthquake in San Fran- 
cisco. Two people were killed.” This 
summary initially appeared plausible, 
but FRUMP usually provided more 
details for an earthquake story, such 
as the severity of the earthquake and 
the amount of damage reported. As it 
happened, the original news report 

Yale researchers explored intentionali- 
ty One of the earliest programs to 
embody goals and plans within the 
CD paradigm was Jim Meehan’s 
TALESPIN, which made up stories 
similar to the fables of Aesop. The 
program would start with a set of 
characters who wanted to achieve cer- 
tain goals. The story would be a narra- 
tion of the characters’ attempts at exe- 
cuting plans to satisfy their goals. 
Many of the unsuccessful stories are 
striking in exposing inferences that 
the program had been unable to make. 

One day Joe Bear was hungry. He 
asked his friend Irving Bird where 
some honey was. Irving told him 
there was a beehive in the oak 
tree. Joe threatened to hit Irving if 
he didn’t tell him where some 
honey was. 
Here, the program did not know 

that it could infer the location of an 
object from the location of the con- 
tainer of that object. Once this piece 
of knowledge was added, the program 
tried again. 

One day Joe Bear was hungry. He 
asked his friend Irving Bird where 
some honey was. Irving told him 
there was a beehive in the oak 
tree. Joe walked to the oak tree. 
He ate the beehive. 
Examples such as these serve to 

increase an AI researcher’s respect for 
the complexity and diversity of com- 
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monsense knowledge. 
Goals and plans received a different 

treatment in Jaime Carbonell’s POLI- 
TICS program, which modelled sub- 
jective beliefs using a hierarchy of 
goals. The program would read a news 
headline and interpret it from one of 
two opposing perspectives: conserva- 
tive and liberal. The program would 
reason about its opponent’s behavior 
(in this case, the Soviet Union) based 
on a model of the goals of the oppo- 
nent. In the event of competing goals, 
the program would use counterplan- 
ning to block an opponent’s goal, or to 
make sure that its own goals were not 
blocked by the opponent. 

The domain of political judgement 
in POLITICS led to the development 
of a new set of semantic primitives to 
represent institutional actions. These 
social acts could capture the differ- 
ence between “John gave Mary a 
book” and “The policeman gave Mary 
a ticket.” The first case is a simple 
transfer of possession, while the sec- 
ond embodies an institutional act 
based on the implicit authority of the 
polity for which the policeman is an 
agent. The social acts were designed 
to represent institutional actions and 
mediated disputes. 

Two other domains were the sub- 
ject of new semantic primitives: 
objects and attitudes Wendy Lehnert 
with Mark Burstein developed a set of 
primitives to capture inferences about 
physical objects, such as bottles, pens, 
sponges, umbrellas, and shopping 
carts. Object representations allow 
the inference of default information 
such as location, associated scripts, 
and relations. Object primitives 
embody a psychological approach to 
the problems of naive physics. 

The attitudes primitives attempted 
to represent a number of dimensions 
of attitudes including fondness- 
antipathy, fascination-disinterest, 
fear-security, attraction-repulsion, 
jealousy-concern, irritation-comfort, 
respect-disdain, and trust-distrust. 
These semantic primitives provided a 
basis for making inferences about 
interpersonal behavior. 

At this point, it should be apparent 
that a wide range of problems were 
under investigation. The next stage of 
development involved both exposi- 
tion and synthesis. Yale researchers 

had produced a number of theories 
and techniques that could be adopted 
by others outside Yale. Within the 
Yale AI lab, the new challenge was to 
combine the various knowledge struc- 
tures and theories in an integrated sys- 
tem. 

In the summer of 1978, Yale was the 
site for a workshop in cognitive sci- 
ence. Psychologists, linguists, philoso- 
phers, and anthropologists convened 
in New Haven for four weeks of AI, 
programming, CD, scripts, and theo- 
retical cross-pollination. Most of these 
researchers had little programming 
background Chris Riesbeck and Gene 
Charniak (a frequent visitor at Yale) 
developed “micro” versions of SAM 
and ELI that made those programs 
more accessible to neophyte program 

One day Joe Bear was 
hungry. He asked his 

friend Irving Bird where 
some honey was. Irving 

told him there was a bee- 
hive in the oak tree. Joe 
walked to the oak tree. 

He ate the beehive. 

This pedagogical approach was later 
expanded into a book which included 
five Yale AI programs (Schank and 
Riesbeck 1981). 

Meanwhile, Rick Granger, and later 
Mike Dyer, addressed the synthesis 
problem. BORIS (Better Organized 
Reading and Inference System) was an 
effort to combine disparate knowledge 
types including CD actions, scripts, 
plans, goals, interpersonal relations, 
role themes, and affect. Dyer’s pro- 
gram could read stories in great 
depth-making numerous inferences 
and tying together various pieces of 
information The domain of Dyer’s 
BORIS was melodramatic divorce sto- 
ries, such as one might encounter on a 
soap opera. 

These various programs reflected 
the natural language processing 
paradigm that began with MARGIE. 
The role of syntax was secondary to 
the problems of meaning representa- 
tion. Larry Birnbaum provided argu- 
ments for the roles that meaning and 

world knowledge must play in lan- 
guage tasks, pointing out the problems 
associated with the “syntax module” 
approach to language processing. Car- 
bonell, Cullingford, and Gershman 
discussed the crucial role of meaning 
in machine translation. Later, Steve 
Lytinen’s MOPTRANS program 
embodied an approach to machine 
translation which integrates seman- 
tics and syntax in a psychologically 
motivated fashion. 

Learning, Memory, and Explanation 

The work on conceptual dependency, 
scripts, plans, and goals demonstrated 
the importance of knowledge repre- 
sentation for cognitive modelling 
tasks. It was clear that people relied 
on a considerable amount of knowl- 
edge about the world. It was also 
apparent that much of this knowledge 
was not innate. People acquire knowl- 
edge. To get computers to simulate 
human cognitive behavior, the pro- 
grams would have to learn as well. 

One of the first Yale learning pro- 
grams was developed by Mallory Self- 
ridge. His program modelled the learn- 
ing of language during a child’s second 
I2 months, that is, between the ages 
of one and two. At this stage, a child 
presumably understands certain basic 
concepts such as specific physical 
objects, movement, eating, and so 
forth. In learning language, the child 
develops a mapping between 
sounds-the words-and these con- 
cepts. Selfridge’s program was based 
on extensive protocols, and concen- 
trated on learning the meaning of 
words and word sequences, rather 
than syntax rules. Selfridge demon- 
strated the generality of his system by 
having it learn not only English, but 
Japanese as well. 

Beyond the specific task of language 
acquisition, there lies the general 
problem of learning. The issue of 
learning can be seen from many per- 
spectives. The computational 
metaphor leads one to view learning 
as a matter of updating memory. Sev- 
eral questions arise. 
l How is human memory organized? 
l How are new events assimilated 
into memory? 
l How are memories indexed for 
retrieval? 
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Given the psychological claims 
made for the AI knowledge structures, 
it was important that the predictions 
made by the theories reflect empirical 
findings In an experiment to explore 
scripts, the psychologists Bower, 
Black, and Turner (1979) tested sub- 
jects who had read script-based sto- 
ries. The results demonstrated that 
subjects would confuse elements of 
different stories if the underlying 
events were similar For example, a 
visit to a doctor’s office is similar to 
going to the dentist This confusion 
suggested that there were not in fact 
distinct, mutually exclusive scripts 
$DOCTOR-VISIT and $DENTIST- 
VISIT. 

The theory needed revision to 
account for this data. Schank pro- 
posed a generalization of the script 
notion: a higher-level knowledge 
structure that organized smaller com- 
ponents. This higher-order script was 
termed a Memory Organization Pack- 
et, or MOP. Thus, there could be a 
MOP for IJROFESSIONAL-OFFICE- 
VISIT which could have complex and 
variable sets and orders of scenes 
This hierarchical view allowed greater 
flexibility. Each scene component 
would have less variability, but might 
be shared among several higher-level 
knowledge structures In the PROFES- 
SIONAL-OFFICE-VISIT MOP, there 
would be common components such 
as making an appointment, going to 
the office, sitting in the waiting room, 
and paying the bill. Only the dentist 
version of this MOP would have a 
scene for tooth extraction. 

MOPS provide an architecture for 
human memory of episodes, and sug- 
gest an explicit mechanism for the 
process of reminding. However, it was 
apparent that people often relate 
events that have little surface similar- 
ity, but share an underlying goal 
structure. Schank proposed Thematic 
Organizational Packets or TOPS to 
provide a goal-based indexing mecha- 
nism for human memory. These top- 
ics are explored in depth in Schank 
(1982). 

An early application of MOPS was 
Janet Kolodner’s program CYRUS 
[Computerized Yale Retrieval and 
Updating System). CYRUS represents 
one of the first attempts to model the 
organization of episodic human mem- 

ory CYRUS stored and retrieved 
episodes in the lives of Secretaries of 
State Cyrus Vance and Edmund 
Muskie. When new events were added 
to its memory, CYRUS integrated 
them with the events it already 
knows about. CYRUS answered ques- 
tions using memory search strategies 
based on reconstructive memory pro- 
cesses 

How could story understanding pro- 
grams benefit from these theories? 
The FRUMP program provides an 
illustration If FRUMP were given the 
same story to read a dozen times in a 
row, it would process the story exact- 
ly the same way each time, and pro- 
duce the same set of summaries This 
repetitive behavior should not be sur- 
prising from a computer, but it would 
be most unusual for a person. We 
would expect the person’s reaction to 
change over time In particular, the 
person should remember having 
already seen the story FRUMP’s prob- 
lem was that it could not remember 
what it had read. 

Michael Lebowitz’ IPP program 
applied MOPS to the problem of read- 
ing newspaper stories IPP (Integrated 
Partial Parsing) had two thrusts. The 
first was a parsing strategy that 
allowed the program to focus its 
attention on the interesting words or 
phrases, and skip the dull ones. IPP’s 
domain of terrorism had a great deal 
of intrinsic interest 

The second and most significant 
aspect of IPP was its ability to remem- 
ber stories that it had read and relate 
them to new episodes Using this 
MOP-based mechanism, IPP could 
detect similarities among stories and 
arrive at generalizations. For example, 
IPP would notice that the victims of 
terrorist acts in Northern Ireland were 
establishment, authority figures, such 
as policemen or soldiers, and that the 
terrorists were members of the IRA. 
When IPP subsequently read a story 
about a policeman being shot in 
Northern Ireland by an unidentified 
gunman, IPP could infer that the gun- 
man was a member of the IRA. 

Another broad area of application 
for episodic memory is the area of 
expert systems The central feature of 
expertise is experience An expert is 
someone who has vast, specialized 
experience, who has witnessed 

numerous cases in the domain, and 
who has generalized this experience 
to apply it to new situations When 
confronted with a problem, the expert 
is reminded of previous, similar prob- 
lems and their respective resolutions. 
It may be that the expert has so many 
exemplars for a given problem that 
the experiences have been distilled 
into a general rule to be applied. 

In the production system paradigm, 
the rule is hard-wired into the system. 
If a rule fails, the system generally 
requires human intervention to revise 
the rule. This makes the system more 
fragile and less robust 

Furthermore, most of the knowl- 
edge in the system is written strictly 
in terms of the domain. While it is 
certainly important for the system to 
have much domain-specific knowl- 
edge, it is also true that people have 
the valuable ability to generalize their 
knowledge across domains. That is, 
they can apply general principles 
acquired in one setting to a situation 
involving quite different specific 
knowledge While the production-sys- 
tem approach offers a general 
paradigm for expert systems, it does 
not provide a general mechanism for 
applying knowledge from one domain 
to another area of expertise. 

A memory-based model of human 
expertise can be contrasted with the 
rule-based approach. 
0 Psychologically valid. People don’t 
become experts simply by being told 
the rules. They become experts by 
extracting the rules from experience 
l Tolerant of rule-failure. Since the 
rules of the system are derived from 
experience, a new experience which 
violates a rule would be assimilated to 
modify the rule. 
l Generalizable across domains. The 
general mechanism of developing 
expertise through experience allows 
the system to be applied directly to 
new domains. 

An expert system that can extract 
information from its experience will 
be able to grow and acquire knowl- 
edge on its own This is a crucial step 
for the long-range success of the 
expert system concept in AI There 
are so many tasks to which automat- 
ed reasoning power might be applied, 
that it is absolutely necessary to 
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develop a mechanism that can assimi- 
late new knowledge directly from 
experience. 

There are several complex research 
issues involved in developing this 
novel approach to expertise. These 
include the familiar questions of 
memory organization and indexing, 
and the underlying learning mecha- 
nism IPP can be viewed as a proto- 
type of this approach. 

IPP’s learning was based primarily 
on noticing similarities between 
events. This similarity-based learning 
is clearly part of human cognitive pro- 

tence to mete out, based on the 
judge’s experience. 

Kristian Hammond’s CHEF program 
has the task of solving problems by 
reusing plans for similar problems. 
The plans are recipes, and the prob- 
lems are the creation of new dishes 
with specific ingredients. CHEF is 
able to reason about multiple, inter- 
acting goals, and furthermore, can 
learn more general planning heuristics 
in the process. When CHEF detects a 
failure in one of its recipes, it can ask 
itself questions to reason about the 
cause of the failure. This process of 

The central feature of expertise is experience. 

cessing, but it does not account for 
the human ability to reject some simi- 
larities as mere coincidences while 
labelling others as significant. 

Schank proposed that learning is 
triggered by expectation-failure That 
is, when we observe a discrepancy 
between our predictions and some 
event, we then have something to 
learn. We need to revise our knowl- 
edge structure. The mechanism for 
updating our knowledge often 
requires explanation. Schank suggests 
that explanation plays a central role 
in learning and intelligence (Schank 
1986). He proposes an explicit knowl- 
edge structure, explanation patterns 
(XI%), that are used to generate, index, 
and test explanations. 

The theories of failure-driven learn- 
ing and explanation are being explored 
in several domains, including eco- 
nomics, law, and cooking. Chris Ries- 
beck, together with Jim Spohrer and 
Charles Martin, have developed a pro- 
gram in the domain of political eco- 
nomics. The program begins with a 
novice view of economic questions, 
and becomes increasingly knowledge- 
able through reading the opinions of 
experts, such as Milton Friedman and 
Lester Thurow. 

William Bain has applied the mem- 
ory-based approach to legal reasoning. 
Bain observed several lawyers and 
judges in the context of sentencing 
convicted criminals. His program, 
JUDGE, simulates the process of a 
judge deciding the appropriate sen- 

examining failures can generally lead 
to an explanation of the failure. 

Computer models of human learn- 
ing provide insights into how people 
learn. Schank recognized that these 
theories can be applied to the teaching 
of children (Schank 1981). One major 
lesson learned from building comput- 
er programs that read stories is that 
children, even at the age of 3 or 4, 
have a tremendous amount of knowl- 
edge about the world. Computer pro- 
grams have to be fed that knowledge 
in order to read. With children, that 
knowledge is a rich asset that the edu- 
cation process should exploit. In 
recent years, Schank and the author 
have applied AI perspectives to the 
construction of educational software 
for microcomputers. Together with 
Riesbeck and Soloway, we have begun 
to look at a wide range of issues to 
create effective educational programs 
that address the pressing needs of the 
schools. 

In summary, Schank’s work in cog- 
nitive modelling has three broad agen- 
das. The first is scientific. What is the 
nature of the human mind? How do 
people remember, learn, and under- 
stand? 

The second is technological. How 
can we build intelligent machines? 
How can we program computers to 
communicate in natural language, 
learn from experience, and explain 
anomalies? 

The final goal is educational. How 
can the scientific and technological 

results be applied to primary and sec- 
ondary education? How can micro- 
computers best be deployed in our 
schools? 

Spatial and 
Temporal Reasoning 

Drew McDermott came to Yale from 
MIT in 1976. At MIT, McDermott had 
worked with Gerald Sussman in 
developing the CONNIVER AI pro- 
gramming language (McDermott and 
Sussman I973), and applied deductive 
techniques to problem solving and 
planning. Three themes of McDer- 
mott’s early work have continued in 
his past ten years at Yale. 
l Deduction McDermott has based 
much of his research on the underly- 
ing paradigm of logical deduction. His 
work with Doyle on non-monotonic 
logics is one extension to classical 
logic to address particular AI problems 
of plausible reasoning. 
l Embedded AI Languages. The origi- 
nal work on CONNIVER has been 
extended with the Duck language. 
Practical issues of portability were the 
motivation for the NISP language used 
in implementing Duck. 
l Planning. The intellectual testbed 
for McDermott’s theories is problem 
solving in the physical world. McDer- 
mott and his students have explored a 
range of issues involved in reasoning 
about space and time including 
knowledge representations, planning 
strategies, and scheduling heuristics. 

McDermott has termed his research 
domain theoretical robotics Just as 
Schank’s work explores the implicit 
knowledge that people have about 
intentionality and social domains, 
McDermott tries to make explicit the 
knowledge that people have about 
space and time. A robot must be able 
to solve problems which require 
knowledge about spatial and temporal 
phenomena, and the ability to act in 
the absence of complete information. 

Deduction and Duck 

Many early AI programs adopted the 
robot planning metaphor, but usually 
in a restricted domain, such as the 
blocks world. In these cases, it was 
feasible to represent the complete 
world. That is, the robot would have 
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exact knowledge of the location, size, 
and shape of all relevant objects. It is 
now clear to most AI researchers that 
such complete world knowledge is 
not merely an experimental abstrac- 
tion-it is delusional. Rarely if ever 
does a person have exact knowledge 
The blocks world thus finessed one of 
the toughest AI problems. reasoning 
under uncertainty. 

The typical reasoning paradigm for 
the blocks world was deductive 
retrieval. In a traditional deductive 
logic system, every item in the 
database is true-either as an axiom 
or as a theorem derived through a 
valid inference process. The addition 
of facts always increases the number 
of facts in the database The size of 
the database is a monotonic increas- 
ing function. Deduction provides a 
tidy way to keep track of the state of a 
closed world. 

When faced with uncertainty, a per- 
son or robot must make assumptions. 
These assumptions become part of 
the reasoning process. Non-monoton- 
ic logic derives its name from the sig- 
nificant property that the addition of 
a new fact to a database can result in a 
decrease in the size of the database. 
This curious state is due to the inclu- 
sion of assumptions in the database 
along with observed and proven facts. 
The addition of a new fact could 
result in previous assumptions 
becoming invalid and then deleted 
from the database. For example, if we 
are given the statement “John is mar- 
ried to Mary,” we might infer a range 
of things about John including the fol- 
lowing. 

1. John is an adult male. 
2 John has the usual anatomical 

structure. 
3 John can walk, talk, and chew 

gum 
4. John has a primary interest in 

the welfare of Mary and himself. 
These inferences are based on 

default reasoning, and they are not 
facts. In particular, if we later are told 
“John died, I’ we must revise our 
beliefs to remove any conclusions 
that we had inferred based on the 
assumption, directly or indirectly, 
that John was alive. Thus, learning of 
John’s demise results in our removing 
conclusions from the database. 

Non-monotonic logics comprise a 
range of logical assumptions, from the 
conceivable to the provable, from the 
arguable to the doubtless. The point is 
that people must rely on inferred 
information to understand the world 
around them Inference is the rule, not 
the exception. The problem of reason- 
ing from incomplete information per- 
vades disparate AI domains 

McDermott implemented default 
reasoning in the context of a deduc- 
tive retrieval language: Duck Duck 

substantiated. 
l Duck is a general-purpose AI pro- 
gramming language which is particu- 
larly suited to rule-based applications. 
Duck provides an interactive debug- 
ging environment, including a conve- 
nient way to integrate English lan- 
guage templates into the program. 
This means that Duck can explain its 
actions in a pseudo-English, instead of 
regurgitated code fragments or stack 
frames 

Duck has been around for nearly a 

When faced with uncertainty, a person or robot 
must make assumptions. 

has been the primary vehicle for 
McDermott’s research, and has also 
been made available to researchers 
outside Yale, in both universities and 
industry. 

Duck has several facets 
l Duck is a logic programming lan- 
guage, similar to Prolog. However, 
Duck is a descendent of Hewitt’s orig- 
inal PLANNER language (Hewitt 
1969), which pioneered logic-based 
programming Duck maintains a rela- 
tional database that supports predicate 
calculus deductions, using both for- 
ward and backward chaining. 
l Duck is built on top of NISI’ (Nifty 
LISP)-McDermott’s portable dialect 
of LISP that itself runs on top of other 
dialects of LISP, including Common 
LISP, Interlisp, Franz LISP, ZetaLISP, 
and Yale’s own T (Slade 1987). NISP 
provides a range of features including 
a structure package, type declarations, 
stream-oriented I/O, closures, and a 
workspace manager. Duck has access 
to all the features of NISP. 
l Duck provides a reason mainte- 
nance system which is a mechanism 
for plausible reasoning. In particular, 
Duck maintains justification links, or 
data-dependencies, for assertion-infer- 
ence chains. If some fact is removed 
from the Duck database, then Duck 
can automatically remove all related 
beliefs that were derived based solely 
on that fact, and thus are no longer 

decade. It is a mature programming 
environment for both teaching and 
research-especially in domains that 
are rife with uncertainty. In recent 
years, Duck has been recognized out- 
side academia as an effective tool for 
building expert systems. 

The Realms of the 
Unknown: Space and Time 

The domains on which McDermott 
and his students have concentrated 
are space and time-an abundant 
source of reasoning problems. Spatial 
reasoning encompasses a range of 
problems. These include the follow- 
ing: 
l Naive physics. How do physical 
forces affect physical objects? For 
example, suppose a robot accidentally 
drops a computer out of a third floor 
office window. Where will the com- 
puter end up and in what condition 
will it be? 
l Navigation. How could a robot rep- 
resent knowledge about a familiar ter- 
rain to allow it to plan a route? For 
example, in the previous situation, 
what is a reasonable path for the robot 
to take to get to the new location of 
the computer? Presumably, the robot 
should try a route other than that 
taken by the computer itself. 
l Design. What physical properties of 
objects can be exploited to solve prob- 
lems? What available containers could 
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our forlorn robot use to help carry the a state change that occurs over time, 
pieces of the computer back upstairs? we may invoke a rule such as 
An envelope? A Coke bottle? A desk Rule: If a person is eating, then his 
drawer? A trash can? hunger decreases. 

Ernie Davis’ program MERCATOR We might then read the story. 
was a computational model of memo- John was hungry. He started eat- 
ry for spatial relations McDermott 

Reading a computer program is like reading a 
story-almost. 

and Davis demonstrated that a simple 
Cartesian representation of space is 
not appropriate. In general, people do 
not know the precise location and 
extent of objects in the world Yet, 
people can nevertheless perform a 
range of spatial reasoning tasks based 
on a cognitive map, a conceptual rep- 
resentation of spatial relations 

MERCATOR addressed a number of 
problems, including the following. 
l Inexact knowledge. Many geograph- 
ic facts are imprecise or incomplete 
MERCATOR used a fuzzy representa- 
tion scheme to capture partial knowl- 
edge. Locations could be specified 
with great imprecision. 
l Retrieval The program accessed a 
database of geographic knowledge to 
accomplish tasks such as finding 
routes and answering geographic 
queries. A question like “Is the Chi- 
nese restaurant within walking dis- 
tance?” does not require calculating 
the exact distance involved. 
l Assimilation. The program could 
learn new geographic facts. That is, 
the program would revise its cognitive 
map to be congruent with new senso- 
ry data This learning component was 
the primary focus of Davis’ thesis 

The domain of spatial relations is 
enormous. Davis argues that almost 
any physical problem includes spatial 
reasoning. Furthermore, many 
abstract problems benefit from spatial 
analogies. Space invades our thoughts 

The companion of space is time 
Like space, time is pervasive and peo- 
ple reason about time without com- 
plete knowledge 

Using default logic to reason about 
time can be revealing and problemat- 
ic. Data-dependencies and temporal 
reasoning can have anomalous inter- 
actions. For example, in representing 

ing a hamburger. He finished 
lunch. 
When we observe John eating, we 

infer that his hunger subsides. That is, 
John’s diminished hunger is an 
assumption based on the fact that he 
is eating. However, once John stops 
eating, we must remove this assertion 
from the database. At this point, we 
can no longer infer a decrease in his 
hunger, so this fact is erased The sys- 
tem then concludes that John is still 
hungry after eating lunch. 

What is needed to rectify this situa- 
tion is some notion of effects that per- 
sist. Thorny issues of causality often 
appear in the guise of temporal prob- 
lems. McDermott and his students 
have addressed these problems from a 
variety of perspectives. 

McDermott devised a temporal 
logic for planning and problem solv- 
ing. A computer program, the Forbin 
planner, was developed to explore 
issues of temporal reasoning in plan- 
ning. Forbin builds plans top-down, 
expanding and analyzing the sub- 
tasks. Forbin may have many alterna- 
tive plans in its library for accom- 
plishing a given task It must decide 
which plan best achieves its goal. In 
this process, Forbin relies on two key 
components: a temporal database and 
a task scheduler. 

The ordering of events in a plan can 
be represented using a time map, anal- 
ogous to Davis’ cognitive map, but 
with distinct properties. The cognitive 
map was a geographical database; the 
time map is a temporal database Tom 
Dean implemented a time map main- 
tenance system to allow a planner to 
reason about persistent and transient 
states. A planner faces a dynamic 
world of shifting goals, deadlines, 
changes in the environment, and 

revised assumptions. Dean’s program 
provides a methodology for reasoning 
about these kinds of temporal dimen- 
sions to planning. 

Dean’s temporal database is used by 
David Miller’s task scheduler. A given 
plan may have a large number of steps 
which can be arranged in a number of 
orders. The question for the planner 
is What is the best order? The answer 
to that question depends on a variety 
of factors. 
l Preemption. Can a task be broken 
up into parts that may be executed 
noncontiguously? 
l Resources Do plan steps have over- 
lapping resource requirements? 
l Precedence Is a given step a prereq- 
uisite to another? 
l Delays How soon can a given step 
be initiated? 
l Deadlines How soon must a given 
step be completed? 
l Execution time How long will it 
take to complete a given step? 

Miller developed a representation 
and heuristics for scheduling combi- 
nations of plans, such as preparing 
dinner while washing clothes. The 
program recognizes which steps could 
be reordered or interleaved. 

The work of McDermott and his 
students represents a long-term 
research program. These research 
issues are broad in scope. They can 
provide an illuminating perspective to 
many areas of artificial intelligence. 
McDermott has applied his vision and 
methodology in his introductory AI 
textbook, written with Charniak 
(Charniak and McDermott 1985). 

Cognition and Programming 
The one knowledge domain in which 
AI researchers feel most at home is 
computer programming. Many fields 
of computer science develop tools and 
techniques to make the construction 
of computer programs easier to learn, 
more accurate, quicker, and generally 
more efficient. AI research efforts 
have attempted to automate and 
model the process of programming. 

David Barstow’s work represents 
the automatic programming paradigm. 
Barstow’s PECOS system is a knowl- 
edge-based coding expert. Developed 
at Stanford, PECOS takes a high-level 
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representation of an algorithm and 
converts it into a concrete implemen- 
tation through a process of gradual 
refinement. PECOS’s programming 
knowledge comprises a set of transfor- 
mation rules. Barstow came to Yale 
after Stanford. He explored both the 
applicability of algorithm refinement 
to new problems and the contrasting 
paradigm of deduction-based theorem 
proving for program synthesis, before 
moving on to Schlumberger. 

Following Barstow, Elliot Soloway 
arrived at Yale with a different 
approach to studying programming. 
Instead of a rule-based or logical 
methodology, Soloway’s research is 
goal-based and psychological. Soloway 
established the Cognition and Pro- 
gramming Project (CAPP) which 
focuses on two themes: 
l AI and Software Engineering 
Rather than prescribe how software 
should be designed and maintained, 
CAPP’s approach is first to under- 
stand how experts (and non-experts) 
design, develop, debug, and maintain 
programs, Based on this understand- 
ing, one then is in a better position to 
design tools and make prescriptions. 
l AI and Education. What should 
children be taught about program- 
ming? How should they be taught? AI 
offers some answers to these key edu- 
cational questions. In particular, 
Soloway has focussed on the develop- 
ment of a curriculum for introductory 
programming, which should teach 
more than just the syntax and seman- 
tics of Pascal. More generally, 
Soloway is exploring the development 
of computer-based instructional sys- 
tems than can deliver high-quality, 
individualized instruction. 

AI and Software Engineering 

The design, development, and mainte- 
nance of significant pieces of software 
are complex tasks. One aim of soft- 
ware engineering is the development 
of methodologies, languages, and tools 
that facilitate these tasks. There are 
several approaches to developing such 
methodologies or tools. For example, 
some researchers advocate a more for- 
mal approach to software: by provid- 
ing a mathematical grounding for soft- 
ware, the claim is that the product 
will be more reliable, easier to main- 

tain, and so forth. Soloway’s approach, 
however, is to look less at software 
per se, but rather, focus on designers, 
programmers, and maintainers as they 
engage actively in building and main- 
taining software The claim, then, is 
that by understanding how program- 
mers go about comprehending a pro- 
gram, one can pinpoint where they are 
having difficulties, and thus be in a 
position to design methodologies, lan- 
guages, or tools that address the pro- 
grammers’ problems from a princi- 
pled, cognitive viewpoint. 

Soloway and his group have applied 
this cognitive approach to a number 
of issues in software. 
l Language Design. CAPP has found 
empirical evidence that in a wide 
class of situations, Pascal’s while con- 
struct is more difficult to use correct- 
ly than is Ada’s loop construct. 
l Program Documentation. Soloway 
and his students have identified spe- 
cific types of knowledge (for example, 
static and causal knowledge] that 
maintainers need to abstract from 
documentation in order to carry out 
effective enhancements. CAPP then 
has gone on to prescribe a documenta- 
tion format that enables maintainers 
easy access to these key types of 
knowledge. 
l Programming Instruction Lewis 
Johnson of CAPP has constructed a 
system, PROUST, that can identify, 
for a class of moderately complex 
introductory programming assign- 
ments, the non-syntactic bugs in stu- 
dents’ programs PROUST’s perfor- 
mance is comparable to a human 
teaching assistant. Currently, 
Soloway’s group is designing a cur- 
riculum for an introductory program- 
ming course, as described in the next 
section. 

The particular theoretical perspec- 
tive Soloway brings to the study of 
programmers can be summed up by 
saying. “Reading a computer program 
is like reading a story-almost.” That 
is, Soloway has explored the notions 
of schema, goal, and plan that were 
developed in the story understanding 
world, and applied them to the pro- 
gramming world. Building on these 
notions, Soloway has developed fine- 
grained cognitive models of how pro- 
grammers design, comprehend, and 

generate programs. In developing 
these models, CAPP has carried out 
traditional controlled-experiments, 
analyzed talking-aloud protocols, and 
constructed computer-based simula- 
tions. In sum, the theoretical aspects 
of this research push the frontiers of 
problem solving and text comprehen- 
sion research, while practical payoffs 
for software engineering follow direct- 
ly from the principled study of the 
programming process. 

AI and Education 

A commonly held belief is that teach- 
ing kids computer programming really 
teaches them some important prob- 
lem solving strategies that transfer to 
other subject domains. Unfortunately, 
there is precious little evidence that 
supports this claim. Soloway’s group 
is carrying out a number of studies in 
search of this elusive transfer effect. 
For example, they are looking to see if 
learning programming helps students 
to solve certain types of algebra word 
problems more effectively. Unless 
transfer can be shown, then program- 
ming might best be viewed as simply 
another job skill, along with drafting. 
In fact, this view is gaining accep- 
tance in educational circles now. 
Soloway disputes that vocational view 
of programming, and is attempting to 
provide quantitative evidence of the 
elusive transfer effect. 

One main reason why transfer has- 
n’t been found can be traced to the 
current content of the vast majority of 
introductory programming courses. By 
and large, students are taught the syn- 
tax and semantics of a programming 
language. A quick look at the intro- 
ductory programming textbooks will 
convince the reader of this claim. The 
tables of contents are typically orga- 
nized in terms of the constructs of the 
language being taught. Based on 
studying thousands of programs-and 
bugs-generated by novice program- 
mers, Soloway feels that language 
constructs are not the problem, but 
rather that students are having signifi- 
cant difficulty in “putting the pieces 
together,” that is, composing and coor- 
dinating constructs, plans, and goals 
into a coherent whole. Moreover, 
based on what CAPP researchers have 
learned about what expert program- 
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mers know and about the strategies 
they employ, Soloway has identified a 
set of concepts that need to be taught 
explicitly. In teaching introductory 
programming, Soloway introduces 
concepts such as goals, plans, rules of 
programming discourse, problem sim- 
plification, simulation, reflection on 
past problem solving efforts, and top- 
down design. Studies are now under- 
way to assess the effectiveness of this 
new curriculum. 

Cognitive Science 
Many of the questions posed by artifi- 
cial intelligence researchers are not 
new or unique to AI. Other disciplines 
have examined the problems of lan- 
guage, mind, and cognition. In recent 
years, researchers from many circles 
have reached out across traditional 
academic boundaries to explore con- 
trasting perspectives and paradigms. 
The intersection of these fields-psy- 
chology, philosophy, linguistics, 
anthropology, neuroscience, and 
AI-has become known as cognitive 
science 

This research program provided per- 
spective on the process of psychologi- 
cal experimentation. Researchers 
noted a marked contrast between dis- 
covery and verification research. AI 
research tended to generate new 
hypotheses, while cognitive psycholo- 
gy served to test existing ones. While 
both roles were important and sug- 
gested synergism, the Yale psycholo- 
gists argued that cognitive psychology 
should develop more hypothesis gen- 
eration techniques. 

sus scruffy In this view, a theory or 

This dichotomv between verifica- 
tion and discovery paradigms is 
reflected in another distinction adopt- 

discipline or hypothesis (or researcher) 

ed by Abelson and Schank: neat ver- 

can be neat or scruffy. Neat implies 
formal, quantitative, and observable 

Yale researchers embrace this inter- 
disciplinary approach. Over the years, 
we have invited visitors from dis- 
parate fields to spend time at Yale to 
share their views. They represent a 
wide spectrum, including George 
Lakoff, John Ross, James McCawley, 
Donald Norman, Joseph Weizenbaum, 
Hubert Dreyfus, John Searle, and Jer- 
rold Katz. 

The primary source of ongoing 
interdisciplinary research has been 
Yale psychologists, in particular, 
Robert Abelson. In 1979, Schank and 
Abelson established a formal research 
and training program at Yale in cogni- 
tive science. Under that aegis, they 
attracted many young psychologists 
including John Black, James Galam- 
bos, Noel Sharkey, Ray Gibbs, Steven 
Shwartz, and Steven Read Psychology 
graduate students were likewise 
attracted to the program They includ- 
ed Brian Reiser, Scott Robertson, 
Colleen Seifert, and Valerie Abbott. 

Scruffy suggests the antithesis: infor- 
mal, qualitative, and intuitive 

Broadly speaking, AI is scruffy and 
cognitive psychology is neat. There 
are clear exceptions, such as automat- 
ic theorem proving in AI and Freudian 
mentalism in psychology. More 
importantly, there is a symbiosis 
between the neats and scruffies of the 
world. They each need the other, 
though they may not be willing to 
admit it. The scruffies generate boun- 
tiful harvests of ideas, while the neats 
painstakingly sift the grains of truth 
from the pounds of chaff 

The process continues. AI 
researchers plant the seeds that sur- 
vived previous harvests. The cultiva- 
tion proceeds under various guises: 
scientific, technological, and educa- 
tional 

The experimental paradigm of psy- 
chology provided a vehicle for explor- 
ing the AI theories of cognitive pro- 
cessing, and the results of the experi- 
ments stimulated new AI theories 
Much of Black’s early work focussed 
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