
LETTERS 

On “Learning Language” 

Editor: 
I was dismayed by the inclusion of William Katke’s 

article (“Learning Language Using A Pattern Recognition 
Approach,” Spring 1985). Usually you do an excellent job 
of representing “the current state of the art in Artificial In- 
telligence” (to quote your Editorial Policy), but I consider 
this article an exception. 

First of all, although the article claims to be on “Learn- 
ing Language,” what it presents is at best a knowledge-free 
approach to learning syntax. I saw no evidence that the 
induced syntax is useful for anything, and good reasons to 
believe that it is not, such as the unmnemonic category 
names and the intrinsic limitations of finite state gram- 
mars. 

Second, this kind of stuff has been done before, and it 
didn’t work too well then either; for a useful overview of 
the field and pointers into the literature, see the article on 
“Grammatical Inference” in Volume 3 of The Handbook of 
Artificial Intelligence, (ed. Cohen and Feigenbaum). 

Third, even several years ago AI researchers were build- 
ing systems that had more to do with real language learn- 
ing. For example, Anderson’s LAS (Cognitive Science 1:2, 
1977) induced the mapping between strings in a context- 
free language and semantic network representations of their 
meaning. Granger’s FOUL-UP (IJCAI-77) and Carbonell’s 
POLITICS (Cognitive Science 2:1, 1978) addressed the 
problem of learning the meaning of new words from con- 
text. 

Fourth, the whole pattern recognition approach ig- 
nores the central issues in language learning, such as rep- 
resentation, semantics, and domain knowledge. Even the 
section on Future Research talks about “setting parame- 
ters” instead of addressing these issues. The whole point of 
AI is to escape from the fruitlessness of syntactic pattern 
recognition by bringing knowledge to bear. 

Fifth, besides having little to do with the rest of the 
paper, the Conclusion manages to place Schank in the 
“logic” camp. This is pretty funny considering what he 
had to say about logic in the Great Debate with McCarthy 
at AAA183. 

Katke’s project appears to be a classic example of 
“climbing a tree to get to the moon.” It is distressing to 
see so much misdirected effort. 

Jack Mostow 
Department of Computer Science 
Rutgers University 
Hill Center-Busch Campus 
New Brunswick, New Jersey 08903 

Editor: 
Jack Mostow is reading things into the article that are 

not in it. The article is not recommending a pattern recog- 
nition approach in place of a knowledge based approach. 
We are exploring learning by pattern recognition of knowl- 
edge for knowledge based systems. This is clearly stated 
in the first paragraph of the article. 

Several of Mostow’s remarks indicate lots of things not 
done in the article. The purpose of the article was not to 
explore the entire domain or solve all the problems. The 
intent is this: “Here is a simple but powerful learning al- 
gorithm. Future research needs to be done to demonstrate 
its usefulness. Intuition suggests this algorithm and oth- 
ers like it will be useful.” There would be little progress in 
science if people did not share their intuitions. 

Mostow points out that this kind of stuff was done 
once before and it didn’t work. It’s only fair to also point 
out that no approach has yet solved the language process- 
ing problem. Inferencing did not find practical applica- 
tions until computers were big enough and fast enough 
to support that kind of processing. Learning by pattern 
recognition was tried even before inferencing. It had lit- 
tle chance of success without the necessary info structure. 
Expert systems and knowledge based approaches to pro- 
cessing natural languages are part of that info structure. 

A better way to characterize knowledge acquisition re- 
search would be to say if knowledge based approaches are 
the rockets that will get us to the moon then learning tech- 
niques are the pumps that will fill the fuel tanks. Pattern 
recognition will be one of those pumps. 

William Katke 
IBM 
Page Mill Road 
Palo Alto, CA 94304 

Editor: 
Design, like system development in AI, is an incremen- 

tal and an exploratory process. 
I was surprised by the recent article “Towards bet- 

ter models of the design process” (Mostow, 1985) that in- 
troduced “the key research problem in AI-based design” 
as the development of better models of the design pro- 
cess. The article, a report based on the Rutgers Workshop 
on Knowledge Based Design Aids, presented “some of the 
most important ideas emerging from current AI research 
on design, especially ideas for better models of design”. 

While the report did a good job of laying out the pos- 
sibilities in terms of numbered ideas (Idea #i) and issues 
(Issue #i), there was no mention of design in AI being 

48 THE AI MAGAZINE Fall, 1985 

AI Magazine Volume 6 Number 3 (1985) (© AAAI)



an incremental, fundamentally exploratory process. The plete specifications and the verification of proposed imple- 
ideas and issues presented were firmly focused on a conven- mentations, we should concentrate more on incremental 
tional view of the design process-a view I can caricaturize development of specifications as a result of assessment of 
as the SPIV methodology: performance. This in turn depends on development of ab- 

Specify-Prove-Implement -Verify 

Variants and refinements of the SPIV methodology 
were all that was reported. The original workshop may 
have been directed only at the use of AI to assist in con- 
ventional design problems. It may have purposely ignored 
the question of a design methodology for AI itself. 

In either event it does not matter, I would still main- 
tain that a rather different and important paradigm for 
design was omitted. The paradigm, which has no name al- 
though phrases like Run-Understand-Debug-Edit (RUDE) 
begin to capture the essential cycle involved, is, I claim, 
a viable but thoroughly neglected alternative for both AI 
system design and more traditional design processes (ar- 
chitectural design, for example, see Bazjanac, 1974). There 
may also be no real distinction to be made there either; 
again, it does not matter for my present argument. In my 
opinion, an important class of design processes appeared 
to be ignored. 

Let me try to sketch out this alternative paradigm and 
indicate my reasons for believing in its importance with 
respect to design in AI (and by implication, its importance 
to design in general). 

Rather than verifying an implementation of a rea- 
sonably complete specification, the procedure in AI can 
be better described as incrementally developing an ade- 
quate approximation to some incompletely specified func- 
tion. One can agree with this coarse distinction but claim 
that its significance is not the exposure of an alternative 
paradigm for design; instead its significance is a reflection 
of the “hacking syndrome” that is endemic in AI. When 
the field reaches maturity, a state whose advent will be 
hastened by the current surge of interest in commercial 
AI, the RUDE paradigm will be replaced by a SPIV-based 
methodology. AI system designers will then have become 
software engineers distinguished only by the complexity of 
their domain. 

This view, I argue, is at best premature, and at worst 
totally wrong: it may be that a RUDE-based methodol- 
ogy is an approach well-suited to the nature of AI prob- 
lems. That is not to say that typical manifestations of 
RUDE techniques are satisfactory-far from it. It is only 
to say that the general nature of the RUDE paradigm may 
be more appropriate as a basis for AI design than is the 
SPIV paradigm. The RUDE paradigm is in dire need of 
development and many of the ideas and issues described 
by Mostow will contribute to such development. 

Complex and ill-structured problems are the domain 
of AI, and the design of adequate implementations of such 
problems necessarily appears to be an incremental, evolu- 
tionary, exploratory process. Instead of striving for com- 

straction techniques (in order to obtain intellectually man- 
ageable specifications from behaviorally interesting pro- 
grams), and techniques of design-for-change. 

Sandewall (1978), for example, has raised this last 
point with respect to structured programming and AI. The 
loose conglomerate of rules and guidelines known as struc- 
tured programming is an all-at-once technique, which is 
typical of work within the SPIV paradigm. Given a com- 
plete specification of some problem, how can we implement 
it such that the resulting object is maximally transparent 
to humans? That is the question that structured program- 
ming seeks to answer. If any changes are introduced they 
are introduced into the specification, which is then reim- 
plemented (at least that is the theory, the practice is all 
too often some manifestation of RUDE techniques of the 
worst kind). 

By way of contrast, the RUDE paradigm suggests a 
need for some analogous but different concept-Sandewall 
calls it “structured growth”. Such a concept would involve 
rules and guidelines for incrementally adding structured 
code in a way that maintains overall clarity of structure, 
and for altering parts of a structured object, again in a 
way that preserves its perspicuity. 

I can single out two characteristics of AI problems that 
argue for a RUDE, rather than a SPIV, paradigm for the 
design process. 

First, many AI problems are highly context sensitive, 
and the relevant context is not easily circumscribed. Worse 
than that, many AI problems exhibit tightly-coupled con- 
text sensitivity: intelligent answers to such problems are 
highly dependent on contextual information, i.e., infor- 
mation external to the particular problem at hand. Thus, 
for example, the meaning of a sentence may be minimally 
dependent on the actual words that constitute the sen- 
tence. The interpretation of an image may also have little 
dependence on the actual image data itself. The best ex- 
planation of the reasoning behind some decision can be 
more dependent on who wants the explanation, and why, 
than on the particular decision itself, and so on. 

A succinct and complete context-free specification of 
such problems thus appears to be an unrealistic goal. (Al- 
though there is always hope that such apparently tightly- 
coupled, context sensitive problems can be decomposed 
into a collection of more manageable, fairly modular sub- 
problems.) 

An example of a non-tightly-coupled AI problem is 
chess: the next best move for any board configuration is 
(almost) totally dependent upon the particular configura- 
tion and independent of any contextual considerations. 

The second characteristic that I will mention in sup- 
port of my argument is adaptivity, which translates into 

THE AI MAGAZINE Fall, 1985 49 



a need for machine learning in AI. A number of observers 
(see for example Schank, 1983, and Samuel, 1983) see ma- 
chine learning, despite years of neglect, as critical to the 
design of AI systems. I have argued at length and in de- 
tail in Partridge (1985) for this and for most other points 
that I have had to deal with very cursorily here. Reasons 
why I believe that a non-trivial machine learning capabil- 
ity must be accommodated in a paradigm for the design 
of AI systems, and why such a belief implies the RUDE 
rather than the SPIV paradigm, are: 

(i) Everyone is different, if an AI system is to behave even 
reasonably intelligently, it cannot neglect this fact. 

(ii) Any one person is different at different times: a major 
role of AI systems is to impart knowledge to people, 
and if it does not respond to the changes it induces, it 
will have failed-it will not be AI. 

(iii) The empirical world is a rapidly and subtly changing 
place (quite apart from the people in it); an AI sys- 
tem to remain an AI system must keep abreast of the 
relevant changes. 
The discovery of robust and generalized learning al- 

gorithms would perhaps enable the necessary adaptivity 
to be accommodated within the SPIV paradigm. But un- 
til such time as we find these learning algorithms (and I 
don’t think that many would argue that such algorithms 
will be available in the foreseeable future) we must face 
the prospect of systems that will need to be modified, in 
non-trivial ways, throughout their useful lives. Thus in- 
cremental development will be a constant feature of such 
software and if it is not fully automatic then it will be part 
of the human maintenance of the system. I am, of course, 
not suggesting that the products of say architectural de- 
sign (i.e., buildings) will need a learning capability. Nev- 
ertheless, a final fixed design, that remains “optimal” in a 
dynamically changing world, is a rare event.The similarity 
between AI system development and the design of more 
concrete objects is still present, but it is, in some respects, 
rather tenuous I admit. 

In sum, the first characteristic, tightly-coupled con- 
text sensitivity, implies that design involves incremental 
development of an adequate specification. And the sec- 
ond characteristic, adaptivity, implies incremental devel- 
opment throughout the life of the system. 

I have discussed various approaches to, and aspects of, 
a disciplined RUDE-based methodology for AI (e.g., Par- 
tridge, 1978, 1981, and 1984). I am clearly a believer, but 
is anybody else? I find the neglect of incremental design 
techniques all the more surprising in view of the current 
concerns with expert systems. The designers of such sys- 
tems must deal with incomplete knowledge bases (no one 
seriously suggests that a complete knowledge base is pos- 
sible), and with incrementally updating these knowledge 
bases. They need logics for inferencing from incomplete 
knowledge (as proposed for example by Levesque, 1984), 

and they need a paradigm for incrementally updating the 
knowledge without generating an unmanageable tangle- 
i.e., expert system designers seem to have a clear need for 
a RUDE-based paradigm. 

Hewitt (1985) argues for what I take to be some RUDE- 
like paradigm for “developing the intelligent systems of the 
future”. He discusses the problems of continuous change 
and evolution, and the need to accommodate necessar- 
ily incomplete information, which implies, he says, explo- 
ration rather than searching-the traditional approach in 
AI. 

One can in fact take this argument right into the camp 
of traditional software engineering. There is a growing 
realization in software engineering (see for example Gid- 
dings, 1984 ) that a fundamental feature of such software 
is that it grows and changes-or that it should. This be- 
ing the case, the static SPIV paradigm is being seriously 
questioned as to its appropriateness as the standard to be 
achieved. 

De Millo, Lipton, and Perlis (1979) have argued fairly 
convincingly that the possibility of ever formally verifying 
real-world programs (as opposed to well-defined abstract 
functions) is vanishingly small. And even if verification 
were possible it would not contribute very much to the 
development of production software. Hence “verifiability 
must not be allowed to overshadow reliability. Scientists 
should not confuse mathematical models with reality.” 

AI is perhaps not so special, it is rather an extreme 
and thus certain of its characteristics are more obvious 
than in conventional software applications. Thus the SPIV 
methodology may be inappropriate for an even larger class 
of problems than those of AI. 

I have raised all these points not to try to deny the 
worth of Mostow’s ideas and issues concerning the design 
process, but to make the case that such endeavors should 
also be pursued within a fundamentally incremental and 
evolutionary framework for design. The potential of the 
RUDE paradigm is deserving of more attention than it is 
customarily accorded. It is not yet obvious that the design 
of AI systems should aspire to a fundamentally SPIV-type 
methodology-it is still an open question. 

References 

Bazjanac, V. (1974) Architectural design theory: Models of the de- 
sian m-ocess. In W. R. SDillers (Ed.). Basic Questions of De&n 
Tie&. Amsterdam: Nort&Hollaid. ’ ’ - 

. I 

De Millo, R. A., Lipton, A. J., & Perlis, A J. (1979) Social processes 
and proofs of theorems and programs. Communications of the ACM 
22(5):271-280. 

Giddings, R. V (1984) Accommodating uncertainty in software de- 
sign. Communications of the ACM 27(5):428-43. 

Hewitt, C (1985) The challenge of open systems. Byte. April, 
pp. 223-242. 

Levesque, H J (1984) The logic of incomplete knowledge bases, in 
on conceptual modelling M L. Brodie, J Mylopoulos, & J. W. 
Schmidt (Eds ), NY:Springer-Verlag 

Partridge, D. (1978) A philosophy of “wicked” problem implementation 
Proceedings of the AISB/GI Conference, Hamburg, 238-247 

50 THE AI MAGAZINE Fall, 1985 



Partridge, D. (1981) “Computational theorizing” as the tool for re- 
solving wicked problems. IEEE Trans Systems, Man, and Cy- 
bernetics, SMC-11, No. 4, 318-322. 

Partridge, D. (1984) What’s in an AIprogrum? Proceedings of ECA184, 
669-673. Pisa, Italy, 

Partridge, D. (1985) Artificial intelligence and the f&me of software enga- 
neeting Chichester, UK: Ellis Horwood (forthcoming) 

Mostow, J. (1985) Toward better models of the design process. AI 
Magazine 6( 1) : 44-57. 

Samuel, A. L. (1983) AI, where has it been and where is it going? IJCAI- 
83, 1152-1157 

Sandewall, E. (1978) Programming in an Interactive Environment: 
the “LISP” experience. Computing Surweya 10(1):35-71. 

Schank, R. C. (1983) The current state of AI: One man’s opinion. 
AI Magatine, Winter-Spring, 1983, pp. 3-8. 

Derek Partridge 
Computing Research Laboratory 
New Mexico State University 
Las Cruces NM 88003 

Response to Derek Partridge 

Editor: 
On first reading Partridge’s comments, I found myself 

agreeing with many of them; in fact, I thought I had made 
some of the same points in the article, though perhaps with 
less emphasis. In particular, I agree that exploration and 
learning are important, and said as much in the section on 
“Investigating the role of learning in design.” However, his 
emphasis on the iterative nature of design is well-taken. 

Before proceeding further, I’d better clean up a pos- 
sible confusion between two closely related concepts. A 
design “model” describes how design is done, while a de- 
sign “methodology” prescribes how it ought to be done. 
My article was concerned with improving models of design 
by explicitly representing various aspects of the process 
that at present are imperfectly understood, not with ad- 
vocating a particular design methdology. However, aside 
from his comment that “an important class of design pro- 
cesses appeared to be ignored,” which can be taken as a 
criticism of a design model, Partridge largely addresses 
issues of methodology. Of course, better models may sug- 
gest improved methodologies, and the distinction is further 
blurred by the current movement toward knowledge-based 
design systems whose added leverage comes from making 
more aspects of the design process explicit. 

One of these aspects is the intended behavior of the 
designed artifact. Obviously any comprehensive model of 
the design process should include a description of this be- 
havior, i.e., a specification. Where Partridge and I appar- 
ently disagree is on the proper role of such a specification 
in a design methodology. Partridge’s RUDE methodol- 
ogy focusses on design iteration, but neglects the role of a 
specification other than the program itself. 

At the other extreme he places SPIV, a straw man that 
I never advocated in the first place. Partridge’s feedback- 

free caricature of the SPIV methodology apparently con- 
structs a complete specification and then proves, imple- 
ments, and verifies it without modification, thus neglect- 
ing the iterative nature of the specification process and 
the specification changes resulting frv implementation 
and use. Contrary to Partridge’s diagram, a specification 
cannot be “proved,” at least not in the sense of verifying 
a program against a formal description of what it is sup- 
posed to do; for a specification, there is no such higher 
level description. At best, a specification can be subjec- 
tively validated against the designer’s intent; methods for 
assisting validation include natural language paraphras- 
ing, static analysis, symbolic execution, and experiment- 
ing with a prototype, but are necessarily incomplete, since 
the designer’s complete intent is inaccessible to the ma- 
chine (and often to the designer). Moreover, as Partridge 
points out, “valid” designs are invalidated by inevitable 
changes in the designer’s intent or the system’s environ- 
ment. Also, the specification may need to be changed as 
a result of the methods used to implement it (Swartout & 
Balzer, 1982). 

Unfortunately, my article seems to have taken these 
points too much for granted in its discussion of speci- 
fication changes and reimplementation. The companion 
report (Mostow, 1984) was more explicit: “(Scherlis ob- 
served that) although a derivation is an idealized design 
history of the implemented code, the actual design process 
need not be a linear progression of commitments leading 
from specification to implementation.. . a derivation may 
be designed by patching it, not just by successively ex- 
tending it.” 

The article gives several compelling reasons for includ- 
ing such a specification or idealized design history as an 
explicit part of a design methodology. The one most rel- 
evant here has to do with assisting design exploration: if 
reimplementation is the inner loop of design exploration, 
automating it should free the designer to explore alterna- 
tive designs more easily. “If the specification is modified, it 
may be possible to reimplement it by replaying the deriva- 
tion of the original implementation. A specification change 
may necessitate patching the transformation sequence in 
places where the original design decisions are no longer 
appropriate. However, this is much cleaner than patching 
the end product, where the effects of the revisions may 
be widespread” (page 46, citations omitted). I will call 
this specification-based methodology COURTEOUS, for 
“Changes Obtained by Using Replay of Transformations 
to Enforce Oft-Updated Specifications.” 

The differences between COURTEOUS and RUDE 
can be clarified by drawing an analogy between imple- 
mentation and compiling. Modifying an implementation 
directly (i.e., RUDEly) is like patching compiled code. In 
contrast, the COURTEOUS approach of modifying a spec- 
ification and replaying the derivation corresponds to edit- 
ing a high-level program and recompiling it, and should 

THE AI MAGAZINE Fall, 1985 51 



be easier for the same reasons. For example, if the ef- 
fects of a single specification change or design decision are 
distributed throughout the implementation, it is easier to 
change one part of the derivation than to make patches all 
over the implementation. This distribution effect explains 
why patched code is hard to understand and maintain, 
and why Yules and guidelines for incrementally adding 
structured code in a way that maintains overall clarity of 
structure” are not always feasible. 

To continue the analogy between implementing and 
compiling, the process advocated by Partridge for abstract- 
ing “intellectually manageable specifications from behav- 
iorally interesting programs” corresponds to decompiling, 
i.e., the notoriously difficult problem of inferring function 
from structure. A solution would be useful, but it seems 
much easier to support the implementation process than 
to invert it. 

After describing the RUDE paradigm, Partridge ex- 
plains why he thinks it is especially well-suited to the de- 
sign of AI systems. I did not follow all of his arguments 
here. 

In particular, I do not see how the context-sensitivity 
of explanation argues against the use of specifications. The 
various contextual factors are simply additional inputs to 
the explanation process. Admittedly, this information is 
difficult to represent, but this seems irrelevant. Certainly 
realizing that a computation requires an additional input 
is a typical specification change. I think the basic argu- 
ment is that the tight coupling between an AI system and 
the environment in which it operates implies that the im- 
plementation of the system must proceed in tandem with 
developing a model of the environment, which is part of 
the specification. This may argue against SPIV, but not 
against COURTEOUS. 

Partridge sees “machine learning, despite years of ne- 
glect, as critical to the design of AI systems.” As a re- 
searcher in machine learning, I agree on its importance, 
and would like to emphasize that the years of neglect have 
been over for some time; witness the 1980, 1983, and 1985 
International Workshops on Machine Learning, and the 
flurry of recent papers. 

Partridge cites three reasons why AI systems should 
learn. 

l Point (i) involves individual differences, but he fails to 
relate them to machine learning. 

l Point (ii) says that an interactive AI system should 
update its user model (I agree) and is not AI if it 
doesn’t (this is overstating the case). 

development; in fact this is true of virtually all software, 
not just AI systems. However, I disagree that expert sys- 
tem designers need a RUDE-based “paradigm for incre- 
mentally updating the knowledge without generating an 
unmanageable tangle.” On the contrary, this tangle is of- 
ten a symptom of the patching-compiled-code syndrome. 
In this case, the “code” consists of rules compiled by inte- 
grating diverse sorts of expertise. The COURTEOUS solu- 
tion is to factor these different sources of knowledge apart, 
and explicitly record them and the process by which they 
are combined. Structuring the design process in this way 
should enable the resulting expert system to give better 
explanations of its behavior and enhance its maintainabil- 
ity (Swartout, 1983; Neches et al., 1984). 

The COURTEOUS approach does not come for free: 
Making specifications and derivations explicit imposes a 
high overhead on the initial design process. The payoff 
can be expected to come during subsequent redesign. The 
overhead of increased formalization may not be worth it 
for a throw-away experimental AI system used only by its 
creator, but should eventually be amortized for a complex, 
long-lived system by reducing the cost of maintaining it. 

As Partridge observes, current practice tends to patch 
existing implementations rather than reimplement. This 
can be attributed to the cost of manual reimplementa- 
tion. As automated replay tools are developed that lower 
the cost of reimplementation closer to recompilation, the 
COURTEOUS approach should become more feasible. 

References 

Lenat, D , Hayes Roth, F , & Klahr P. (1979) Cognitive economy 
in artificial intelligence systems IJCAI-6, 531-536. 

Mostow, J. (1984) Rutgers workshop on knowledge-based design. 
SIGART Newsletter (90)) October 1984, 19-32. 

Neches, R , Swartout, W., & J. Moore (1984) Enhanced maintenance 
and explanation of expert systems through explicit models of their 
development. Proceedings of the IEEE Workshop on Principles 
of Knowledge-Based Systems, Denver, Colorado, December 1984 

Swartout, W. (1983) XPLAIN: A system for creating and explain- 
ing expert consulting systems. Artificial Intelligence 21(3):285-325 
Also available as ISI/RS-83-4. 

Swartout, W., & R. Balzer (1982) On the inevitable intertwining of 
specification and implementation. CACM, July 1982, 438-440 

Jack Mostow 
Department of Computer Science 
Rutgers University 
Hill Center-Busch Campus 
New Brunswick, NJ 08903 

l Point (iii) says that an AI system should update itself 
in the face of a changing environment. (Lenat et al., 
1979) makes the same point and offers some solutions. 

Unfortunately, Partridge fails to spell out why any of 
these points favors the RUDE approach. 

I agree that adaptive systems will require incremental 

Editor: 

We believe that a comment in the letter “AAAI-84 
Profile” which appeared in the Spring, 1985 issue of the AI 
Magazine is inappropriate in a professional journal. The 
statement “some half of [the women present at AAAI-841 
wore no wedding ring” implied that a segment of female 

52 THE AI MAGAZINE Fall, 1985 



AAAI members attending a professional meeting was po- 
tentially “available.” By publishing the letter without com- 
ment you tacitly encourage viewing female members, not 
as fellow members and colleagues, but as objects of a very 
unprofessional sort of attention. 

Phyllis Koton Deborah Estrin 
Sharon Gray Rivka Ladin 

Mike Eisenberg 
Laboratory for Computer Science 

Massachusetts Institute of Technology 
Cambridge Massachusetts 02139 

Gavin Duffy Bonnie Dorr 
John Batali Dalvid A. Levitt 

Mark Shirley Robert Giansiracusa 
Fanya S. Montalvo 

Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

545 Technology Square 
Cambridge, Massachusetts 02139 

Kent M. Pitman V. Ellen Golden 
Symbolics Inc. 

Four Cambridge Center 
Cambridge, Massachusetts 02142 

Editor: 
The AI Magazine should have a humor section to liven 

it up, just a smidgen. 
The attached just came off the e-mail after several 

different people got into the act after Craig Reynolds’s 
original answer. I think it is funny, and it concerns lisp- 
machines and Lisp and so forth. 

Bob Stone 
Symbolics, Inc. 
11 Cambridge Center 
Cambridge, MA 02142 

What is the bridge mailing list? 

OK, it was the mailing list used during the work that the 
precursor of the Graphics Division did for Paramount Pic- 
tures for the feature film STAR TREK III: The Search 
for Speck. We created 24 fps video elements which were 
recorded and played back through monitors on the set of 
the bridge of the Enterprise and several other ships. These 
24 hz monitors (kept in sync with the film camera) were 
then just photographed along with the rest of the set to 
provide the appearence of a working space ship bridge. 
“Click on [Warp 51, Mr. Sulu.” 
“Sir! The controls aren’t responding!” 

“Type (Function) control-(Clear Input)!” 

“Captain, the Screen Manager canna take much more o’ 
this!” 

“[Emergency Break]!” 

“It’s no good sir, we’re in the Cold Load Stream. . .” 
“Message from Star Fleet Headquarters, Captain, on Serial 
Line Zero.” 

“Put it on Lisp Listener 5, Uhura.” 

“Greetings, Captain Kirk. SCRC-Stony-Brook is up for 
service now. Just thought you might want to know.” 
&‘Uhura, deexpose Lisp Listener 5. Yes, Speck, what is it 
now?” 

“We only have one megaword left before we lose our last 
chance to enable incremental garbage collection, Sir.” 
“What about the ephemeral GC, Speck?” 

“It can’t keep up at this speed, Sir. As long as we remain 
above Warp Three, the New Dilithium System conses like 
a bear.” 
“Your recommendations?” 
“Cut back to impulse power and do a GC-immediate, sir.” 

“I’m afraid that’s not possible. We have to get to Meta 
Beta Three with this shipment of cartridge tapes before 
their next full FS dump, or millions of innocent files may 
die.” =i 

1 
1985 

Proceedings 
Available 

QUANTITIES LIMITED! 
Each bound volume contains the text of papers 
delivered in the technical program at the premier 
presentation of the Artificial Intelligence and Ad- 
vanced Computer Technology Conference/Exhibi- 
tion, April 30, May 1 and 2, 1985, Long Beach 
Convention Center. Diagrams, charts, illustrations 
included. A valuable desk-top reference source! 

US $75.00 per copy postpaid 
SEND CHECK OR MONEY ORDER SORRY, NO CODS. 

(Foreign orders, add US $10.00 P&H) 

MAIL TO: Tower Conference Management Co. 
331 W. Wesley St., Wheaton, IL 60187 

Please send me 
Payment of US $ 

Name 

Company 

copies of the AI ‘85 Proceedings. 
enclosed. 

Address 

City 
(No Post Office Boxes) 

State ___ Zip 

THE AI MAGAZINE Fall, 1985 53 




