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Abstract 
This article surveys a portion of the field of natural language 

processing. The main areas considered are those dealing with 
representation schemes, particularly work on physical object rep- 
resentation, and generalization processes driven by natural lan- 
guage understanding The emphasis of this article is on concep- 
tual representation of objects based on the semantic interpretation 
of natural language input. Six programs serve as case studies for 
guiding the course of the article. Within the framework of de- 
scribing each of these programs, several other programs, ideas, 
and theories that are relevant to the program in focus are pre- 
sented. 

RECENT ADVANCES in natural language processing 
[NLP] have generated considerable interest within the Ar- 
tificial Intelligence [AI] and Cognitive Science communities. 

Within NLP, researchers are trying to produce intelligent 
computer systems that can read, understand, and respond 
to various human-oriented texts. Terrorism stories, airline 
flight schedules, and how to fill ice cube trays are all do- 
mains that have been used for NLP programs. 

In order to understand these texts and others, some way 
of representing information is needed. A complete under- 
standing of human-oriented prose requires the ability to com- 
bine the meanings of many readings in an intelligent manner. 
Learning through the process of generalization is one such 
mechanism. The integration of representation and general- 
ization in the domain of NLP is the subject of this article. 

Physical object understanding is an area in which a va- 
riety of representation schemes and generalization methods 
have been used. In past years, researchers have devised 
various representation systems for objects that range from 
very simple PART-OF relations to complex, visually-oriented 
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techniques. Many of these systems are driven from natural 
language input. Thus, physical object understanding sys- 
tems serve as a good focal point for our discussion. 

The need to integrate representation with generalization 
comes about when one is faced with the problem of undcr- 
standing how several objects and/or events compare with 
each other. For example, a particular representation system 
might be able to encode that a chair has a seat, a back, and 
legs. Furthermore, assume that this system has represented 
within itself several different chairs that all have these three 
basic parts. Now suppose that this system finds out (reads) 
about a bench that has just a seat and legs. In order to 
recognize that the bench is just like a chair only without a 
back, the representation system needs the ability to make 
generalizations. Here the generalization would be, “an ob- 
ject to sit on must have a scat and legs.” One could argue 
that a complete representation of chairs and benches requires 
knowledge of their common parts. Thus, generalization is 
intertwined with representation. The generalization process 
is, of course, more than just a way of structuring knowledge. 
Generalization is one very important aspect of learning. 

Recent work in NLP has recognized the interaction be- 
tween reprcscntation and generalization and has started to 
integrate them into a unified approach to understanding. 
The need to integrate these heretofore separate areas is par- 
ticularly obvious in systems that are intended to read and 
process a large number of texts. As a matter of convenience, 
this article will refer to representation, generalization, and 
their interrelation as represent&on/generalization. 

This article surveys a portion of the field of NLP. The 
main areas considered are those dealing with representation 
schemes, particularly work on physical object representation 
and generalization processes driven by natural language un- 
derstanding. A historical account of how research has pro- 
ceeded in these areas is given with emphasis on the past few 
years, during which the field of NLP has grown tremendously. 
Somewhat stronger consideration is given to work done in 
representation than in learning (generalization). This is sim- 
ply due to the overwhelming amount of research that has 
been done in conceptual representation. Early work in learn- 
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ing did not deal with complex representations of events or 
objects, so there was little need to integrate generalization 
with representation. Therefore, much of the material in this 
article will appear to be divided into two distinct groups: 
representation and generalization. 

We have chosen to present the work in representation/ 
generalization by following the chronological progression of 
computer programs written for NLP. The reasons for doing 
so are twofold. Most researchers in cognitive science with 
a computer science background at some point embody their 
ideas in a program as a vehicle to test them on real-world 
problems. Thus, NLP programs written to date generally 
span the body of research done in this field. The second 
reason to discuss these programs is that they incorporate 
ideas from outside the field of AI. Any single functioning 
NLP program must in some way incorporate concepts that 
many researchers outside of computer science grapple with. 
A focus on programs still allows us to report work done by 
cognitive scientists who lack a computer science leaning, as 
well as those researchers who are program-oriented. By fol- 
lowing the chronological progression of these programs, we 
can get a feel for where current NLP research came from and 
where it is headed. 

The six programs that will guide the course of this article 
are: SHRDLU (Winograd, 1972), MARGIE (Schank, 1975), 
GUS (Bobrow et al., 1977), OPUS (Lehnert and Burstein, 
1979), IPP (Lebowitz, 1980) and RESEARCHER (Lebowitz, 
1983a). Within the framework of describing each of these 
programs, several other programs, ideas, and theories that 
are relevant to the program in focus will be presented. 

The first program, SHRDLU, provides a context for dis- 
cussing a very important technique used in representation 
systems: semantic networks. Some rudimentary learning 
techniques were also explored in conjunction with this pro- 
gram and they are mentioned in this section. 

Conceptual Dependency [CD] (Schank, 1972) forms the 
backbone of MARGIE. CD and other similar systems offer 
language-independent means for representing knowledge de- 
rived from natural language input. Other related linguistic 
theories are also mentioned while describing MARGIE. 

GUS was one of the first NLP programs to employ Marvin 
Minsky’s frame idea (Minsky, 1975) for representing knowl- 
edge. KRL (Bobrow and Winograd, 1977a), a language built 
concurrently with GUS and designed to provide an environ- 
ment for developing frame-based systems, is also treated in 
this section. 

The next two programs presented, OPUS and IPP, are 
recent developments dealing with physical object represen- 
tation and generalization-based memory, respectively. OPUS 
uses Object Primitives, an extension to CD, to represent real- 
world objects. IPP employs Memory Organizational Pack- 
ets [MOPS] (Schank, 1980; Schank, 1982) to encode action- 
oriented events in a system that makes generalizations about 
terrorism stories. 

RESEARCHER continues in the vein of IPP and applies 
similar concepts of generalization-based memory to the do- 

main of understanding physical objects. It integrates a ro- 
bust physical object representation scheme with an advanced 
generalization method in an NLP system designed to read, 
understand, and remember patent abstracts. As such, it 
also demonstrates how hierarchically structured objects can 
be generalized about as part of understanding. 

The OPUS, IPP, and RESEARCHER programs, as well 
as several other ones discussed within their contexts, repre- 
sent the state of the art in NLP, as far as physical object 
representation/generalization are concerned. 

SHRDLU-Representation Using Semantic Nets 

We start by considering a system concerned with prob- 
lems similar to the ones faced by many researchers working 
on representation/generalization. Rcprcsenting physical ob- 
jects and understanding natural language about them is what 
SHRDLU (Winograd, 1972) was all about. 

In the early 1960’s work in NLP centered on computa- 
tionally intensive programs that applied a small set of gen- 
eral, usually syntactic’ rules to some input text, in order 
to achieve a desired result. These programs are typified by 
those that tried to do machine translation of one natural 
language into another. As is well known, these attempts 
were unsuccessful (Tennant, 1981). Several years later, as 
researchers realized that more specialized rules were needed 
and computers became more capable, NLP programs changed 
in nature. The result was that programs could employ many 
specific rules for processing purposes and/or include large 
amounts of data for representational uses. This, of course, 
brought about the problem of what kinds of rules to use and 
how to control them. 

SHRDLU was one of the first of this new wave of NLP 
programs. It was a fully integrated program that dealt with 
a very specific domain, the blocks world. As implemented, 
the computer created a simple setting containing images of 
cubes, pyramids, and the like on a video display, along with 
an imaginary arm that could move these objects around. 
Within this world, SHRDLU allowed the user to request re- 
arrangements of the blocks, ask questions about the state of 
the world, and converse about what was possible within this 
world. 

What made SHRDLU a truly landmark program was 
the way it accomplished its goals. Three major compo- 
nents made up the system: a syntactic parser based on an 
Augmented Transition Network [ATN] (Thorne et al., 1968; 
Woods, 1970), a semantic processor used to interpret word 
meanings, and a logical deductive segment that figured out 
how to perform the user’s requests and answer questions 
about what is possible in blocks-world. The functioning of 
the various components of SHRDLU proceeded as follows: 
The ATN-based syntactic parser would figure out what pos- 
sible meanings the input text might have; next the semantic 

‘Syntackc is used to mean the simple subject, verb, object ordering of 
a sentence Whole or even partial grammars were not used in early 
machine translation attempts Most sentences were translated on a 
word-by-word basis 
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procedures would pick one of these meanings based on its 
knowledge of the state of the blocks-world; finally the logical 
deductive components would create a plan for fulfilling the 
user’s request. 

Another early program to make use of an ATN parser 
was LUNAR (Woods et al., 1972). This program functioned 
as a question answering front-end to a database about moon 
rocks. LUNAR’s vocabulary and parsing capabilities far ex- 
ceeded SHRDLU’s; however its data representation was the 
same that the underlying database had, and as such was not 
particularly interesting from a cognitive point of view. On 
the other hand, SHRDLU’s data representation was very in- 
teresting and, at the time, was in the forefront of AI research. 

SHRDLU maintained its knowledge in both procedural 
and declarative formats. The declarative knowledge was rep- 
resented in the form of a semantic network. Semantic nets, 
as they are commonly called, were first described in (Quil- 
lian, 1968). They are arbitrarily complex networks in which 
nodes represent actions, ideas or, in the case of SHRDLU, 
physical objects. Arcs connecting nodes represent relations 
among them. For example, if there is a pyramid on top of 
a block, where the pyramid is represented by a single node 
and so is the block, then an arc connecting them would rcp- 
resent the relation SUPPORTED-BY An IS-A link (arc) is 
what is used to represent the concept that one node is an 
instance of another. For example, a dog IS-A mammal. All 
the properties that a mammal might have can be inherited 
by a dog. Thus, if the network had the fact that a mam- 
mal breathes air encoded in it, then it would be assumed 
that a dog also breathes air. Any relation the program- 
mer chooses can be represented by arcs in semantic nets. 
Aside from static physical relations, like SUPPORTED-BY, 

and classification relations, like IS-A, more emphatic rela- 
tions, like MUST-BE-SUPPORTED-BY and CAN-NOT-BE-A, 

are possible. Thus, a mammal CAN-NOT-BE-A reptile. The 
deductive reasoning procedures in SHRDLU make USC of these 
relations. 

Much has been written about semantic nets (see Woods, 
1975 for example). They have been (and perhaps still are) 
the dominant knowledge representation system used in NLP, 
if not in all of AI. SHRDLU exemplified the best points about 
semantic networks. The simple node-arc formalism provides 
for easy representation of associations. They are useful at 
encoding static factual knowledge and are versatile in that 
they permit a wide range of data to be encrypted. Because 
of the limited domain of knowledge needed to understand 
the blocks-world, few of the difficulties and limitations of 
this scheme surfaced (Wilks, 1974), which is one of the rea- 
sons why SHRDLU was so successful. Among the shortcom- 
ings of classical semantic nets are: no universally accepted 
meanings for links; difficulty in representing time dependent- 
knowledge; problems resulting from the need to organize and 
manipulate a large network. Nevertheless, semantic nets are 
a very useful tool for knowledge representation. 

One of the consequences of picking a good representation 
system is that some seemingly difficult problems become rel- 

atively easy to solve. By using semantic nets to represent 
the physical objects in a blocks-world, learning about simple 
object structures can be carried out. Of particular interest 
is the work Winston (1977) did with a program [ARCH] to 
learn concepts, such as the form of an arch. An arch can be 
represented by a three-node semantic net. After presenting 
the ARCH program with a correct example of an arch, subse- 
quent three-node nets are inspected by the computer along 
with external input declaring each example to be correct, 
nearly correct, or incorrect. From these data, the program 
generalizes what it means for a structure (semantic net rep- 
resentation) to be an arch, and updates the semantic net. 
Specifically, the program compares the training examples it 
is given and extracts the information common to the correct 
examples that does not contradict what has been learned 
from the incorrect examples. Winston’s work demonstrated 
the usefulness of generalization, particularly in the context 
of NLP. The objects generalized were fairly simple compared 
to the type used in later programs, such as RESEARCHER. 

In SHRDLU, semantic networks were sufficient to cap- 
ture simple relations among block-like objects. A complex 
physical object with many sub-parts could be represented by 
a simple semantic network, but it would become an unwieldy 
computational object to manipulate. For example, represent- 
ing an automobile would be rather messy using this scheme. 
Furthermore, the fact that a car is usually thought of as one 
ob,ject is lost to a conventional semantic net representation 
because all nodes have an equal status. Thus, the car’s tire 
could seem as important as the whole car. 

One way to overcome the inability of most semantic net 
representation systems to deal cffcctively with large networks 
of data is to chunk information into regions within the net- 
work and treat these chunks as if they were individual nodes. 
Thus, a large semantic net with 10,000 nodes could logically 
be reduced to a network of, say, 200 chunks in which each of 
the 200 chunks would contain sub-networks of a small size. 
This partitioning of a network was proposed by Gary Hendrix 
(Hendrix, 1979). 

Several advantages over simple semantic nets are ap- 
parent in his scheme. By separating low-level knowledge 
from high-level knowledge, the encoding process can repre- 
sent more varied information. For example, the color, shape, 
and size of an object could be linked together within a parti- 
tion and the partition itself could have links to other nodes 
or partitions (e.g., indicating higher-level facts about the ob- 
ject’s purpose). 

This hierarchical partitioning results in smaller numbers 
of objects at any one level that need to be manipulated. 
Furthermore, partitions are useful for grouping objects so 
that they can be quantified. That is, a section of a semantic 
net can be designated so that all its members have some 
particular property while no objects outside it do. Frames 
(Minsky, 1975) are another way of solving many of the same 
problems as partitioned semantic nets. 

Summary. The SHRDLTJ program was a milestone in NLP 
research. It made extensive use of semantic networks as a 
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means of representing knowledge about a blocks-world. By 
using a syntactic parser, it could perform the commands re- 
quested by users and answer questions posed in English. Few 
limitations of the program were apparent because of the very 
limited domain in which it dealt. 

Semantic networks have proved to be an extremely usc- 
ful knowledge representation technique. They were used in 
SHRDLU to represent simple physical objects, but can be 
used to encode practically anything. Although they are very 
versatile, they have some important limitations, including 
the lack of standardized meanings for links and difficulty in 
manipulation of large network structures. The use of parti- 
tioned semantic nets generally solves the large network prob- 
lem by breaking it into groups of small sections. 

The structure of semantic nets allows them to be used 
for generalization. Links that allow for inheritance of prop- 
erties from higher level nodes in the network, are the key to 
carrying out simple learning from examples. 
MARGIE-Conceptual Dependency 
and Other Linguistic Theories 

Syntactic parsing worked well in the blocks-world do- 
main, but a deeper understanding of language is called for 
when using representation/generalization schemes that en- 
code complex data. This section describes one approach to 
representing the meanings of components that are presented 
via a natural language. 

While researchers in psychology, like Quillian, and in 
computer science, like Winograd, were working out repre- 
sentational issues using semantic nets and the like, linguists 
were making great strides forward in a relatively new field 
called computational linguistics. This branch of linguistics 
is mainly concerned with using computers to simulate NLP. 
One way of breaking down computational linguistics is into 
syntax, semantics, and pragmatics. 

Syntax, in a computational linguistic environment, im- 
plies the study of sentence analysis and generation from a 
purely structural viewpoint. Noam Chomsky’s theories of 
generative grammars (Chomsky, 1965) and his classification 
hierarchy of formal languages were the modern starting 
points in this subfield. In addition to Chomsky’s work, there 
has been a fairly large effort in describing and building syn- 
tactic parsers. Examples of the research in this area are ATNs 
(Augmented Transition Networks) (Thorne et al., 1968; 
Woods, 1970), which form the basis of several powerful com- 
puter parsers, including the one used in SHRDLU. 

Chomsky is credited with revolutionizing linguistic the- 
ory. However, he has aroused many critics who point out 
his failure to deal with semantic and pragmatic issues in lan- 
guage comprehension. Semantics is generally understood to 
be the study of language meanings, while pragmatics con- 
cerns itself with connecting meaning to real-world experi- 
ences. Although these definitions are easy to state, in prac- 
tice, the distinctions between semantics, pragmatics, and 
syntax arc often blurred. 

Following the demise of early attempts to do machine 
translation among natural languages, many computational 

linguists began focusing their attention on problems of se- 
mantics. The early NLP programs were strictly syntactic in 
nature. Many researchers felt that these programs, were in- 
capable of doing an adequate job of understanding, necessary 
to perform machine translation or paraphrasing.’ Semantics 
seemed to offer a way to improve greatly upon the perfor- 
mance of these programs. Writing programs that could un- 
derstand the meanings of the words that they were reading 
became one new theme of NLP research. 

One such program, MARGIE (Schank, 1975), was created 
with several objectives, including the paraphrasing of single 
sentences, while serving as a test bed for a new theory of 
semantic representation called Conceptual Dependency [CD] 
(Schank, 1972). Roger Schank, the principal designer of CD, 
set out to synthesize some recent work in linguistics and psy- 
chology into a consistent and useful theory that would lend 
itself to computerization. CD is a language-independent, 
primitive-based representation scheme for NLP. It is primar- 
ily based on the ideas of both semantic pramdives and case 
grammars which will be discussed below. MARGIE was the 
first attempt at testing this theory in a computer environ- 
mcnt . 

MARGIE functioned in two similar modes. In paraphrase 
mode, MARGIE would read English sentences and parse them 
into an internal CD representation. In this form various in- 
ferencing systems would product other CD-forms. The last 
stage of this mode would generate an output sentence based 
on the CD-forms. The inferencing mode of MARGIE worked 
in a similar manner. However, instead of producing a com- 
plete paraphrase of the original sentence, MARGIE would 
output a series of statements concerning what inferences it 
made about the meaning of the input text. 

To get an idea of what MARGIE’s capabilities were, con- 
sider the following examples, taken from (Schank, 1975): 

In paraphrase mode the input text “John advised Mary 
to drink the wine” would produce the output: 

John told Mary that drinking the wine would benefit her 

This shows that MARGIE must know something about 
the meaning of the verb “advise.” In fact, CD provides 
the program with a method for classifying all action-based 
verbs [ACTS]. Although verb classification is not directly 
applicable to physical object representation, CD provides a 
paradigm for developing primitive-based understanding 
schemes. Before a description of CD is presented, consider 
how MARGIE worked in the infercncing mode 

The input: “John gave Mary an aspirin.” would cause 
MARGIE to display the following inferences it had made 
(among others): 

1. John believes that Mary wants an aspirin 

2. Mary is sick 

21t should be noted that early NLP programming attcmpt,s did not. 
do an adequate job of syntactic processing. Since then there have been 
major advances in the ability to use syntax as the basis of NLP systems 
Many of today’s NLP programs rely on syntax, often mixed with other 
processing techniques, and perfmm quite well 
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3. Mary wants to feel better 

4. Mary will ingest the aspirin 

These examples illustrate that CD must also be capable 
of representing the meaning of causal connectives. That is, 
inference (I) (and other beliefs) causes inferences (2) and (3) 
to be made, which explain the stated action of John giving 
Mary the aspirin. MARGIE must also have encoded within 
itself the knowledge that aspirin is usually ingested, in order 
to make inference (4). 

CD works on the theory that all actions (verbs) can be 
reduced in meaning to combinations of a small group of prim- 
itive ACTS. For each ACT represented, there are a fixed num- 
ber of arguments that accompany it. That is, an actor, re- 
cipient, object or other possible case slots must be filled for 
each ACT. Thus, for example, “John gave Mary an aspirin” 
would have the representation: 

(ATRANS) 

ACTOR: John 

FROM John 

TO Mary 

OBJECT aspirin 

ATRANS, one of the primitive ACTS, is used to repre- 
sent the meaning of the verb “gave” and indicates Abstract 
TRANSfer (of possession) of an object. Other verbs, such as 
“take,” are also represented by ATRANS, but have their case 
slots filled differently. 

CD is capable of representing a wide range of actions and 
situations. In addition to the basic ACTS, both mental and 
physical states of a being or an object can be encoded. The 
fact that an event may enable, disable, cause, or generally 
affect a state is also representable within CD. Using these 
connectives, it is possible to represent the meaning of a series 
of sentences that constitute a story with one complex CD 
structure. 

Schank’s theory of Conceptual Dependency was not com- 
pletely new to the field of linguistics. Two main areas of re- 
search contributed to its synthesis. The first was the devel- 
opment and study of case grammars (Fillmore, 1968). Case 
grammars were a byproduct of both classical linguistics and 
Chomsky’s transformational grammar. They reflect classical 
linguistics in the sense that they identify the various parts of 
a sentence such as the main verb phrase and noun phrases. 
However, it is not the surface structure of the sentence that 
is extracted, but rather the meaning. Thus, regardless of the 
formal structure of the sentence, the “case frame” extracted 
by using case grammars will be the same for sentences em- 
ploying the same main verb. Structurally, the cast frame 
looks very much like what was presented in the CD examples 
(above) with actor (or agent), object, instrument, and a few 
other slots available. Case grammars classify verbs by what 
slots (cases) must accompany a particular verb. Thus, for 
example, if the verbs open and throw require the same slots 
OBJECT, AGENT, and INSTRUMENT for their case frames 
then they would be grouped together. CD goes beyond case 

frames, by defining a system of primitives and rules to lnanip- 
ulate them that captures the meaning of a sentence, rather 
than having a case frame for every verb. 

The second building block of CD comes from both lin- 
guistic and psychological research. Semantic primitives are 
generally defined to be the lowest level of symbolism in a 
representation system. In practice, an understanding/repre- 
sentation system uses semantic primitives as a way of classi- 
fying some group such as actions or physical objects. CD is 
an example of a non-hierarchical classification scheme using 
semantic primitives. 

The use of semantic primitives in a representation scheme 
can also be of help in processing. That is, inference rules can 
be grouped according to which primitive classes they apply 
to. This allows a processing system to determine easily what 
inference rules should be tried, which reduces search time. 
For example, the ATRANS ACT in CD can have the rule if 
the FROM slot filler is not specified, then fill it with the AC- 

TOR slot value, attached to it. Other ACTS may not need 
such a rule and they need not have one since rules can be 
specifically bound to a given semantic group. 

Some recent psychological research (e.g., Rosch et al., 
1976), has investigated the existence of fundamental classes 
of physical objects. They give a fair amount of evidence 
which shows that nat,ural categories of objects exist that peo- 
ple USC while perceiving physical objects in the real world. 
Other work by George Miller (Miller, 1975) has given strong 
support to the thesis that verbs can be categorized as well. 
In one study he found that English has over 200 words that 
have the semantic component “to move.” These studies show 
that humans make considerable use of categorization as a 
way of perceiving and understanding input from the real 
world. Furthermore, they suggest that fundamental mean- 
ings in natural language might be tied to real-world objects 
and/or events. 

The concept of categorization is related to the idea of 
semantic primitives. Categorization is a hierarchical way of 
grouping entities so that some organization is apparent. Bio- 
logical taxonomy is an example of such a categorization sys- 
tem. Semantic primitives strive to reduce real-world knowl- 
edge into meaningful groups, usually in a non-hierarchical 
structure. Thus, categorization and semantic primitives are 
both ways of helping people and/or machines perceive data 
from the real world. 

Yorick Wilks has developed a system that he calls pre,f- 
erence semantics (Wilks, 1973), which also uses semantic 
primitives. Preference semantics is a system whereby the 
meanings of some words help to disambiguate the meanings 
of other words while parsing input text. Each word that his 
system can understand consists of a dictionary entry that 
classifies the word into one of five major categories. Within 
the definitions are data that include how to interpret other 
words read in the same cont,ext. Thus, for example, the 
sentence “John grasped the idea” is mlderstood by using 
information encoded in the definitions of each word and in- 
ferring that if John is grasping a non physical object then the 
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meaning of “grasp” must be “understand.” Wilks also built 
a program (Wilks, 1975) that uses preference semantics to 
do translation of English text into French. This was accom- 
plished by making use of the fact that preference semantics 
distinguishes different word senses. Thus, when a given word 
sense was detected in the English input, its equivalent mean- 
ing in French was stored for use in output generation. 

Other NLP systems that use representation mechanisms 
similar to Wilks’s program and MARGIE are The Word Ex- 
pert Parser (Small, 1980), a system much like preference se- 
mantics that is totally dictionary-based; SAM (Cullingford, 
1978; Schank and Abelson, 1977), a program that uses CD 
representations built into higher level knowledge structures 
called scripts; and PAM (Schank and Abelson, 1977; Wilen- 
sky, 1978), a high-level representation system that under- 
stands stories in terms of plan-based schemes. SAM and 
PAM share an English language parser called ELI (Riesbeck 
and Schank, 1976). Both programs are a continuation of 
Schank’s work; they are more advanced than MARGIE in 
that they understand stories in terms of real-world events. 
That is, scripts are used to group events into logical lmits, 
such as the chain of activities that occur in a restaurant set- 
ting. Plans are used to satisfy goals and explain events by 
specifying a sequence of actions that are needed to achieve a 
desired result. 

Summary. MARGIE was basically a way of testing CD. 
Later programs like SAM and PAM used CD as the basis 
for limited natural language understanding systems. CD has 
proved itself as a robust representation scheme that is par- 
ticularly well suited to action-oriented events. It has the 
expressiveness necessary t,o capture causality accurately and 
the conciseness to avoid ambiguity. However, it has several 
drawbacks. The use of a small set of primitives results in 
the loss of some meaning in certaiu contexts. Furthermore, 
static factual knowledge (e.g., physical object descriptions) 
is almost completely neglected by most CD implementations. 

The main reason for studying CD and similar systems 
is that they have demonstrated the usefuhiess of primitivc- 
based, semantic representation systems for use in NLP. Case 
frames, suitably modified for physical object relations, and 
semantic primitives seem to offer powerful tools for formu- 
lating a theory of object representation. Furthermore, the 
formalism of case frames is quite helpful for performing geii- 
eralization, as will be seen when IPP is discussed. 

GUS-Frame-based Representation Schemes 

Semantic networks offer a plausible formalism for physi- 
cal object representation systems, but have several problems. 
The solution seems to be the partitioning of a network into 
groups of nodes that are logically compat,ible Hendrix intro- 
duced partitioned semantic networks as one possible scheme; 
another scheme was used as the basis of GUS (Bobrow et al., 
1977). 

SHRDLU and MARGIE were very useful experimental 
programs but, t,hey did not have much application to real- 
world situations. GUS was designed to provide information 

on airline flight schedules. Although GUS was still an ex- 
perimental program, and dealt with only a small number of 
airline flights, it represented a move in the AI community 
toward using natural language input/output modules (front- 
ends) for databases. GUS was one of the first programs to 
make explicit use of Minsky’s frame concept. 

GUS’s domain of discourse was very limited; in fact, it 
only knew about airline flights scheduled for cities within 
California. It played the role of a travel agent during a con- 
versation with a user. An initial database was extracted 
from the Official Airline Guide. With this data in a suitable 
frame format, and a parsed user request, GUS reasoned out 
a correct and appropriate response. 

Frames are conceptual objects that are used as an orga- 
nizational mechanism for grouping pieces of knowledge into 
logically consistent blocks. They are most easily thought of 
as an extension of semantic networks where each node is a 
comparatively large structure that contains enough informa- 
tion to describe an item adequately at some level of detail. 
While a node in a semantic net usually is simply the name 
of an item, a frame can possess information about how to 
classify an item, how to use it, what attributes it has, and 
virtually anything else that might be useful to know about 
an event or object. Furthermore, the knowledge encoded in 
a frame need not be static (declarative): it rnay be dynamic 
(procedural), or it can be a combination of these (Winograd, 
1975). For example, if an airline reservation system used a 
frame to represent each date a plane reservation was made 
on, it might have slots in the frame as follows: 

YEAR 

MONTH 

DAY-OF-MONTH 
DAY-OF-WEEK 

The information filling the YEAR, MONTH, and DAY- 

OF-MONTH slots might be filled with static data (probably 
single numbers). The DAY-OF-WEEK slot might contain pro- 
cedural knowledge as follows: 

(IF YEAR and MONTH and DAY-OF-MONTH are filled 

THEN [FIGURE-WEEKDAY]) 

GUS ran by using information encoded within several dif- 
ferent framrs to guide its operatiou. For example, at the start 
of a conversation, GTJS would try to find the data needed to 
satisfy the requests of a prototypical dialog frame. The at- 
tempt at filling in slots would lead to the need to fill in lower 
level frames before the dialog frame would be complete. Thus 
the date frame might have to have its slots filled in before 
it could be included as part of the dialog frame. By having 
a sequence of prototype frarncs to follow, GUS achieved its 
goal of acting like a travel agent. 

The term slots refers to the “important elements” (Wino- 
grad, 1975) in a frame. Slot fillers can be thought of as 
references to other frames, which is what Minsky originally 
proposed. In any particular application of a frame system, a 
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considerable amount of thought must be given to how many 
slots should be used and what they should contain. A guiding 
principle for frame slot selection is, “A frame is a specialist 
in a small domain” (Kuipers, 1975). 

One very important aspect of the USC of frames as a 
knowledge representation scheme is the default filling of slot 
values for instantiated frames from stereotypical frames. An 
instantiated frame is simply one that has its slots filled, at 
least partially. Default values for frame slots can be easily set 
up by placing them in a stereotype frame and programming 
a system so that if no value for a particular slot is specified, 
then it is inferred from the stereotype. Generally, this default 
processing seems to make sense. For example, if the YEAR 

was not explicitly given in the date frame (shown above) 
then it would be reasonable to assume that the value of the 
slot should be the current year (as most airline reservations 
are not booked too far in advance). However if the DAY-OF- 
MONTH was not given, it would obviously be a mistake to 
assume some value from a stereotype (assuming that only a 
few reservations are made on any given day). 

In order to use frames effectively as a representation sys- 
tem several other operations, aside from default processing, 
are essential. These include matching one frame against an- 
other, allowing for inheritance of properties from higher level 
frames, type checking the values that can fill a slot in order 
to ensure that only certain ones are accepted, and general 
abilities to manipulate a conncctcd network of frames. KRL 
(Bobrow and Winograd, 1977a), a language that was de- 
veloped specifically to allow for knowledge representation in 
the form of frames, includes facilities for the aforementioned 
functions and others. Many of these functions, particularly 
matching and inheritance, are of importance for use in sys- 
tems that perform some sort of generalization about their 
knowledge. 

Although GUS was not a particularly intelligent or ro- 
bust system, it was a great asset in the refinement of some 
of Minsky’s ideas about frames. It also served as a model for 
other programs written in KRL, such as COIL (by Lehnert 
(Bobrow and Winograd, 1977b)), an NLP program that con- 
cerns itself with drawing inferences about physical objects. 
Other NLP systems that are also strongly framed based in- 
clude: Ms. Malaprop (Charniak, 1977), a program that reads 
stories about painting; SAM (Cullingford, 1978) and PAM 
(Wilensky, 1978)) discussed earlier; IPP (Lebowitz, 1980) 
and RESEARCHER (Lebowitz, 1983a), described in detail 
in later chapters. 

Many other very high-level representation languages for 
AI exist. KLONE (Brachman, 1979) and FRL (Roberts and 
Goldstein, 1977) are two systems similar in purpose to KRL. 

KLONE is both a language (embedded in LISP) and a 
methodology for organizing partitioned semantic networks. 
Objects represented in KLONE are structured much like they 
are in a frame-based scheme. However, KLONE’s structural 
formalism also provides a way of establishing inheritance hi- 
erarchies. A distinction is made between stereotypical ob- 
jects and instantiated ones. Thus, the properties of an ob- 

ject can be attached either to a stereotype for that object 

or to the object itself. Because of the hierarchical nature of 
KLONE, complex, but well organized inheritance dependen- 
cies can be established. By using a limited set of possible 
links, the semantics of the network are clearly defined. The 
meanings of the allowed links have been chosen so that con- 
sistency and accuracy prevail in the final representation. 

FRL is much like KLONE, but instead of imposing re- 
strictions on the semantics of links, it forces the network of 
frames to be hierarchically connected. That is, all frames 
must be joined together using INSTANCE and A-KIND-OF 

links. Therefore, the representation tree (actually a net- 
work that is treelike) has as its root the most general object 
(frame), and its leaves are the lowest level instances of what- 
ever the network is representing. For example, if one were 
representing car models, the root frame might be all auto- 
mobiles; below that, frames encoding General Motors, Ford, 
and Toyota cars; and at the bottom of the tree there would be 
Celicas, Skylarks, Mustangs, and so forth. The A-KIND-OF 

links point backward, so that Buicks are A-KIND-OF General 
Motors car. Unless otherwise specified, Buicks would inherit 
all the properties that are common to General Motors cars. 
This type of representation is very helpful in forming and 
storing generalizations made about objects or events. 

Summary. GUS uses frames as a way of representing data 
on airline flight schedules. It also makes use of framed knowl- 
edge to guide its goal-oriented processing. Frame represen- 
tation schemes are an improvement over those using sim- 
ple semantic nets. They allow for grouping data, much like 
partitioned semantic networks. Furthermore, most systems 
employing frames allow for them to be structured in a hier- 
archical manner so that categorization and inheritance de- 
pendencies can be established. 

KRL, FRL and KLONE are languages that are based on 
frame or framelike representations. They all offer ways for 
describing inheritance, matching one frame against another, 
and various other functions. KLONE is the newest and most 
successful of these. It provides a consistent set of seman- 
tics for linking together frames, and thus solves one of the 
problems that has plagued semantic network schemes. 

The use of frames linked together into hierarchical struc- 
tures is a representation that lends itself to generalization 
processing. INSTANCE and A-KIND-OF links correspond to 
specialization and generalization, respectively. Many repre- 
sentation/generalization schemes use this basic formalism in 
constructing complex network descriptions of physical ob- 
jects. 

OPUS-Physical Object Representation Schemes 

SHRDLU addressed the problem of representing small 
numbers of blocklike objects. An obvious extension of this 
is to encode information intelligently about large numbers of 
arbitrarily complex real-world objects. This section describes 
several methodologies for doing so. 

Physical object representation schemes for NLP seem to 
fall into three major groups. The first group consists of those 
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schemes that are mainly concerned with representing the way 
in which objects are used. That is, the functionality of a 
physical object or the way humans think of an object while 
performing a task involving it (Grosz, 1977). The second 
group is formed by those schemes that strive to encode some 
fundamental properties (e.g., melting point or density) of 
physical objects. The remaining group includes those sys- 
tems that seek to represent physical objects from a visual 
perspective, and are therefore useful for describing an ob- 
ject’s structure. These groups are not necessarily distinct, in 
that some representation schemes can be members of more 
than one group. To give a better idea of what these groups 
are, one example system from each group will be examined. 

Object Primitives (Lehnert, 1978) are an excellent ex- 
ample of a physical object representation scheme that is a 
member of the first group. This representation scheme was 
designed to be an extension of CD. Each of the seven primi- 
tives stands for a basic attribute of an object. By combining 
several of these attributes together, any object can bc de- 
scribed. For example, an ice cube tray might have the Object 
Primitive representation taken from (Lehnert, 1978): 

[Ice Cube Tray 
(a SOURCE with 

(output = Ice Cubes)) 
(a CONSUMER with 

(input = Water))] 

Here the SOURCE and the CONSUMER are two of the 
seven possible Object Primitives. Notice that no attempt 
is made to encode the physical form of an ice cube tray 
However, the functional features of an ice cube tray are rep- 
resented by this scheme in a manner that is consistent with 
other CD-forms. 

The primary purpose of OPUS (Lehnert and Burstein, 
1979) was to read sentences about physical objects and con- 
vert them into Object Primitive representations. OPUS can 
be classified as an expectation-based parser that uses its 
knowledge about physical objects to aid in understanding 
input text. 

The program “understands” physical objects in an every- 
day type environment. The representation scheme concen- 
trates on how objects are to be used and allows utilitarian 
inferences to be made. For example, the sentence: _ 

John opened the bottle and poured the wine 

would be represented by a structure that includes such in- 
ferenced facts as: 

. A cap was removed from the bottle. 

. Wine was in the bottle 

. Wine was emptied from the bottle 

This idea fits in well with the original concept in CD 
that ACT representation is central to understanding and that 
various connectives allow for merging ACTS into complex 
events. The work that Wendy Lehnert did to extend CD was 
to define seven Object Primitives that function, in object 

representation, much like Schank’s ACTS, which deal with 
human-oriented events. 

An example of a scheme from the second class of phys- 
ical object representation schemes is the work Gordon No- 
vak (Novak, 1977) did to develop a canonical physical object 
representation system for USC in a program called ISAAC. 
This program reads and solves elementary physics problems 
stated in English. Although this is a NLP application pro- 
gram, the representation for the objects being described in 
the problems is fundamental in the sense that only the phys- 
ical properties of the object are encoded. Thus, for example, 
a dog standing on an inclined plane might be represented 
by a point mass; the fact that the animal is a dog has no 
significance in this context. 

This scheme is canonical because many different objects 
are reduced to the same representation that contains all 
the information to classify these objects uniquely. Canon- 
ical representation is typical of physical object representa- 
tion schemes that fall into this second class. Schemes in this 
class are generally very useful in specific domains, but are 
not too applicable to everyday type situations. The Object 
Primitives scheme is canonical in the sense that an ice cube 
tray has only one purpose (and therefore only one represen- 
tation). However, it is qualitatively different from ISAAC’s 
representation scheme because Object Primitives does not 
try to capture fundamental physical properties of an object. 

An important sub-class of these schemes has received 
considerable attention recently. The term qualitative physics 
(de Kleer and Brown, 1983; Forbus, 1981; Hayes, 1979) 
is used to refer to the notion of understanding real-world 
physics for AI purposes. This implies that qualitative physics 
is simpler than classical physics and that it can function well 
in commonsense reasoning processes. Qualitative physics dif- 
fers from other schemes that fall into this second class in that 
qualitative physics schemes are intended to be applicable to 
a wide range of situations. 

Representations that relate to visual processes constitute 
the third class of object encoding systems. A program writ- 
ten by Stephen Kosslyn and Steven Shwartz (1977) attempts 
to simulate how people use visual data. Their program mod- 
els only a few aspects of visual processing. It is able to search 
an input image for various sub-parts and identify their posi- 
tion relative to other parts, regardless of the scale or, to sotie 
extent, the angle of view. Running in reverse, the program 
is also able to construct well proportioned images by using 
its knowledge of how parts can interconnect. This type of 
ability may be useful in NLP systems that need a structural 
description of an object. 

There has been a rather large amount of research relat- 
ing to physical object perception in recent years. Both ex- 
perimental psychology and robotic vision processing are con- 
cerned with how humans recognize real-world objects. Much 
of this work is based on the idea that scenes are decomposed 
into sets of primitive elements with relational elements hold- 
ing an image together. Some strong evidence that this kind of 
processing takes place in children has been uncovered (Hayes, 
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1978). Vision research spans a wide range of image repre- 
sentation levels (see Cohen and Feigenbaum, 1982, for an 
overview). At the lowest level, scenes arc usually encoded on 
a point-by-point basis, while the higher levels may approach 
abstractions characteristic of schemes used for natural lan- 
guage processing. Kosslyu and Shwartz’s model of vision 
processing fits somewhere in the lower to middle range of 
these schemes. 

Summary. OPUS is primarily concerned with the way ob- 
.jects are used in everyday-type settings. It is a fairly sim- 
ple system desigued to test a physical object representation 
scheme that serves as an extension to CD. 

Most, physical ob.ject representation schemes for NLP 
have one particular specialty OPUS offers a system, Ob- 
ject Primitives, that mates with CD but lacks the ability to 
capture detail of the structure of objects. Other systems, 
like Kosslyn and Shwartz’s, allow for great detail but miss 
out on the higher level abstractions, such as how physical 
objects are used. Encoding an object’s purpose for use in a 
task-oriented environment is also a shortcoming of most cur- 
rent systems (OPIJS and Barbara Grosz’s task domain are 
notable exceptions). To understand complex physical objects 
fully, a need exists for processing techniques from each of the 
three classes: visual, utilitarian, and fundamental physical 
property. 

IPP-Generalization and Memory 

Assuming that the representation problems for a sin- 
gle complex physical object have been solved, we are now 
faced with the problem of organizing many such descriptions 
in an intelligent manner IPP (Lebowitz, 1980; Lcbowitz, 
1983b; Lebowitz, 1983c) and similar programs demonstrate 
how generalization can be used to achieve this end. 

One common feature that most of the preceding pro- 
grams (including MARGIE, GTJS and OPUS) have is their use 
of frames3 as knowledge structures. IPP is no exception. The 
frame structures used in IPP are forms of MOPS (Memory Or- 
ganizational Packets) (Schank, 1980; Schank, 1982). MOPS 
are very high-level representational structures that organize 
scenes, scripts, and supplemental data into a coherent pic- 
ture of an event. In this sense, MOPS work much like plans, 
but are more powerful and allow for dynamic script build- 
ing. That is, the scripts that a MOP employs need not be a 
permanent part of the MOP. They cau be modified, deleted, 
or repositioned withiu the MOP iu order to reflect, a better 
midcrst,anding of what the MOP is encoding. The dynamic 
nature of MOPS is an important clement, in a understanding 
system that uses them. This ability to restructure memory 
dynamically is the principal difference between MOPS and 
simple frames or partitioned semant,ic nets. By allowing for 
a representat,ion scheme that can reorganize its own data, 

3The term frames is used here to include any representation scheme 
which groups dat.a into logical blocks and provides for individual access 
to the slots within these blocks It should be noted that the frames 
used in IPP are equivalent, to those used in MARGIE or GUS in only 
the broadest scnsc 

MOPS go far beyond the capabilities of static frame-based 
processing techniques. 

IPP uses MOPS as long-term memory representations of 
stories it reads about terrorism. Its approach is to scan sto- 
ries from wire services and newspapers and understand them 
in terms of what information it has gathered from previous 
stories. The use of MOPS residing in memory in ur~derstand- 
ing the current input text is one of the important features 
of this program. IPP recognizes similarities and differences 
between events stored with MOPS it has in memory aud then 
uses this observational data to build other MOPS that can be 
used as stereotypical knowledge. This process is a form of 
generalization. 

To exemplify this type of generalization, consider the 
following taken from (Lebowitz, 1980): 

UPI, 4 April 1980, Northern Ireland 

“Terrorists believed to be from the Irish Republican Army mur- 

dered a part-time policeman.. . ” 

UPI, 7 June 1980, Nort,hcrn Ireland 
“The outlawed Irish Republican Army shot dead a Dart-time 

soldier in front of his II-year-old son in a village store Sunday.” 

From these stories, IPP would made the generalization: 
“Terrorist killings in Northern Ireland are carried out 

by members of the Irish Republican Army” 

This generalization is made possible by a comparison of 
MOP slot fillers. The stereotypical MOP for a terrorist killing 
event has slots for place and actor, among others such as 
victim, method, and the like. The program assumes that all 
facts it knows about are relevant to compare After form- 
ing this generalization, IPP will use it, to make inferences 
while reading other stories. Thus, if a new story about a 
terrorist act in Northern Ireland came across the UP1 wire, 
and no ment,ion of who committed the act was made, then 
IPP would assume that the Irish Republican Army was re- 
sponsible. This sort of assumption is an example of default 
processing mentioned in the context of GUS, but carried out 
at a higher level of representation and dynamically. 

To get a better idea of what MOPS can represeut, con- 
sider the MOP skeleton (adapted from (&hank, 1982)), as 
shown in Table 1. 

Here we see that the M-AIRPLANE MOP is composed of 
several scenes, which in turn contrain scripts, which are com- 
plex CD descriptions of a simple activity. That is, scenes are 
at a higher level of representation than arc scripts, and MOPS 
arc at a still higher level. This diagram shows only what the 
DRIVE-TO-AIRPORT scene expands to. All the other scenes 
have some script representat,ion as well. Although MOPS are 
a form of frame, they are far removed from something as 
simple as the date frame exemplified in the GUS description. 

IPP correctly reads and understands hundreds of sep- 
arate stories. The strong performance of this program is 
part,ially due to the fact, that it reads only a limited domain 
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LEVEL OF 
REPRESENTATION 

MOP 
scene 
scene 
scene 
scene 
scene 
script 
script 
script 
script 
. 
. 
. 
. 

CONTENT OF 
REPRESENTATION 

M-AIRPLANE 

(PLAN TRIP) 
(GET MONEY) 
(CALL AIRLINE) 
(GET TICKETS) 
(DRIVE TO AIRPORT) 

FIND KEYS 
PLAN ROUTE 
LOAD LUGGAGE 

etc. 
. 
. 

. 

. 

Table 1 

of stories. By using a small number of stereotypical MOPS 
that are initially input by the programmer, the generaliza- 
tion process is made somewhat easier. Only a relatively small 
mmlber of similarities and/or differences among MOPS need 
be analyzed. 

Lebowitz’s work is not the only recent research into us- 
ing generalization processes in conjunction with natural lan- 
guage urlderstanding systems. CYRUS (Kolodner, 1980), a 
program developed concurrently with IPP, uses a similar gen- 
eralization process in order to understand events concerning 
the activities of individuals (Cyrus Vance was the prototype) 
They differ in the way that they make use of knowledge 
gained through generalization. IPP uses its inferred knowl- 
edge in order to help itself in understanding further input 
text, while CYRUS answers user questions by employing this 
knowledge to help it reconstruct episodes in memory. These 
reconstructed episodes can be thought of as a rc-creation of 
the mental state that the understanding system had while 
reading the original text. 

Recent work by Kathleen McCoy, on a program called 
ENHANCE (McCoy, 1982) uses generalization as a way to 
restructure an existing data base. It subdivides entity classes 
in a data base according to a set, of world knowledge axioms. 
These sub-classes form a structured hierarchy that is tailored 
to a particular use by the information contained within the 
axioms. The enhanced data base is then used by a tcxt- 
generation program to provide intelligent responses to user 
queries. Thus, the work done by the generation program is 
simplified because most of the inferencing it needs to perform 
has already been pre-computed by ENHANCE. 

Much work has been done in psychology in human cog- 
nit,ive modeling (see Kintsch, 1977 for an overview). As a 
consequence of this work, and others’, many different ways 
of thinking about, generalization have emerged. Some re- 
searchers prefer to think that all learning is in some way 
generalization, while others reserve the term generulization 
for a specific cognitive process, such as building stereotypes 
from a limited number of examples. Concept building and 
rule learning (Stolfo, 1980) arc phrases that are often used to 

describe generalization processes (Mitchell, 1982 and Michal- 
ski, 1983 provide useful classifications of learning research). 

Rule learnzng is the term that Tom Mitchell applies to 
his notion of version spaces (Mitchell, 1977). Version spaces 
refers to a representation/generalization method for finding 
the set of all possible rules that can account for the out- 
come of some particular action given the results of this ac- 
tion. They are used in a program called Meta-DENDRAL 
(Buchanan and Mitchell, 1978) which learns rules for use in 
the production system that DENDRAL (Lindsay et al., 1980) 
uses. Although this program does not do natural language 
processing, it uses a dual form of generalization based on 
the version space method. It can produce production rules 
that are as general as possible, but still fully account for 
the observed data, or it can produce very specific rules, 01 
both. This type of multi-lcvcl generalization ability seems 
potentially quite useful in NLP applications, but has yet to 
be implemented. 

Generalizations based on high-level representations, such 
as those that MOPS encode, differ from learning driven by 
simple semantic nets. Winston’s ARCH program could learn 
the concept of an arch by analyzing scvcral correct and cr- 
roneous examples. It did this by studying the form of the 
semantic net that reprcscnted each example. IPP makes its 
generalizations by using the content of MOPS. This form vcr- 
sus content distinction is not clear-cut. Both semantic nets 
and MOPS use links to encode knowledge, and both use nodes 
(frames) to hold data. The differcncc lies in the realization 
that MOPS encode their low-lcvcl knowledge in frame slots 
and their high-level knowledge as links, while semantic net,s 
store all their data as links. 

Knowlcdgc gained through generalization is cert,ainly of 
this high-level type. IPP uses this knowledge as a way of 
structuring its memory. That is, the act of forming gen- 
eralizations actually results in a different overall memory 
structure (only if a new concept is created) Furthermore, 
the system can use its newly acquired knowledge to help 
it understand additional input during the parsing process. 
This type of representation/generalizat~ion integration is ex- 
tremely powerful as the basis for a NLP program that, needs 
to deal with varied levels of reprcscntation. 

Summary. IPP, CYRUS, and ENHANCE rcprcscnt recent 
developments in using gencralixation as an active organiza- 
tional mechanism for knowledge. IPP can read hundreds of 
stories about terrorism and understand them in terms of the 
previous knowledge it, has acquired. The use of MOPS, along 
with the ability to structure them dynamically, is the key to 
this learning process. 

The MOP form of knowledge reprcscntation is very ver- 
satile. Many levels of description can be encoded within a 
hierarchy of conceptual frames. This ability seems to be a ne- 
cessity for a physical ob,ject understanding system that hopes 
to handle complex objects. Complex physical ob.jects are of- 
ten described by a series of part, sub-part rclat#ions. Thus, 
a representation scheme would need to encode the whole ob- 
ject,, its major components, the parts of the major compo- 
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nents, and so forth. SEARCHER uses is based on two principles: physical objects 

The problems that arise in static frame-based represen- can be primarily represented as a hierarchical structure, and 
tation schemes, having to do with their inability to reor- this hierarchical structure is augmented by relations con- 
ganize the data that they encode easily, have largely been netting arbitrary nodes in the hierarchy. For example, an 
solved by dynamic MOP-based systems. IPP and CYRUS automobile can be thought of as a hierarchy of components. 
have demonstrated the usefulness of integrating generaliza- That is, it, has a body, a chassis and an engine; the engine 
tion with representation to form adaptable understanding has a carburetor, a crankcase, and so forth. Furthermore, 
programs. This integration is a consequence of the use of the parts arc related by various positional references (e.g., 
generalization processes as a way of structuring data. the body is on top of the chassis). 

MOPS and generalization offer a viable approach for 
building representation/generalization systems that seek to 
understand knowledge in a complex domain. RESEARCHER uses a canonical, CD-like scheme for spec- 

RESEARCHER-A synthesis 
ifying the inter-component physical relations. Each relation 
used in the parts hierarchy is described as a combination 

IPP demonstrated how a generalization-based memory of various property-value pairs. Five primitive properties, 
can be used to organize a large number of event representa- used in combinations, suffice to reduce natural language re- 
tions into a unified structure. The events used were nonstruc- lation phrases into a closed set. Table 2 (see Wasserman and 
tured frame (MOP) descriptions of terrorism stories. They Lebowitz, 1983, for a full account of this scheme) shows these 
did not have sub-events, sub-sub-events, and the like. Un- properties and some typical words that are strongly associ- 
like these events, complex physical object descriptions are ated with each. Many words and phrases often require two 
hierarchically structured. RESEARCHER (Lebowitz, 1983d; of these five for an accurate description. For example, the 
Lebowitz, 1983a) integrates representation and generaliza- phrase “on top of” would need both the contact and location 
tion in a similar fashion (as IPP did) to form a robust under- properties in its encoding. This scheme is an example of a 
standing system for complex, hierarchically structured object combination of all three types of physical object representa- 
descriptions provided by the patent abstracts it reads. tion approaches. 

RESEARCHER, which is still under development, func- 
tions by parsing patent abstracts into a representation struc- 
ture based upon memettes. Memettes are a type of frame Using this component/relation scheme, RESEARCHER 
similar to MOPS, but are specifically designed to be used in parses patent abstracts into memette structures. The mem- 
building hierarchical structures. Each memette represents a ette frame slots filled by the parser include: TYPE-either 
part of a complex object at some level of detail. That is, a unatary or composite; STRUCTURE-a list of relations, if 
single memette can represent an entire object (a disc drive, composite, or a description of the object’s shape, if unitary; 
for example), or it can be used to encode the description and COMPONENTS-a list of the memette’s parts. The fol- 
of a unitary object (such as a particular screw in the disc lowing text is taken from a patent abstract about an en- 
drive). A memette that represents an object that contains closed disc drive This text and its representation are taken, 
other objects as parts is called composite. in part, from (Lebowitz, 1983a). Disc drive patents form 

The physical object representation scheme that RE- RESEARCHER’s initial domain. 

PROPERTY DESCRIPTION VALUE(S) 

l distance used for relations that refer to a single integer from 0 to 10. 
disjoint objects (e.g., near, remote) O-close, lo-far 

l contact describes the degree to which objects a single integer from -10 to +lO. 
are in contact with each other. -10 = strongly forced together 
(e.g., touching, affixed) +lO = touching, but being forced apart 

l location indicates in which direction an a 2D or 3D angular identification 
object is located relative to another. along with a reference frame 
(e.g., above, left) indication. 

l orientation describes the relative orientation of a 2D or 3D angular identification. 
two objects. (e g., parallel, perpendicular) 

*enclosure used for relations which describe full or partzal plus a shape 
objects, where one is either description of the interface between 
fully or partially enclosed by the enclosed and the enclosing objects. 
another (e.g., encircled, cornered) 

Table 2. 
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Enclosed Disc Drive Having Combination Filter As- 
sembly: A combination filter system for an enclosed disc drive 
in which a breather filter is provided in a central position in the 
disc drive cover and a recirculating air filter is concentrically po- 
sitioned about the breather filter 

A possible memette structure for this patent is: 

(NAME enclosed-disc-drive-with-filter 

TYPE composite 

COMPONENTS (enclosure disc-drive) 

STRUCTURE ((SURROUNDS enclosure disc-drive))) 

(NAME enclosure 

TYPE. composite 

COMPONENTS (cover case) 

STRuCTuRE ((ON-TOP-OF cover case))) 

(NAME. case 
TYPE unitary 
STRUCTURE (box open-on-top)) 

(NAME disc-drive 
TYPE composite 

STRUCTURE unknown) 

(NAME cover 

TYPE composite 

STRUCTURE ((SURROUNDS[centrally] cover breather-filter) 

(SURROUNDS[centrally] recirculating-air-filter 

breather-filter))) 

(NAME breather-filter 
TYPE unknown) 

(NAME. recirculating-air-filter 

TYPE: unknown) 

In order to integrate generalization with representation, 
each memette contains an additional slot that allows it to be 
connected to other memettes forming a generalization hier- 
archy. The VARIANT-OF slot is essentially an IS-A link that 
allows for inheritance of information. The hierarchy created 
by the use of this slot allows for generalizations to be made at 
all levels in the component hierarchy. Consider the two rep- 
resentations of similar enclosed disc drives (also taken from 
[Lebowitz, 1983a]) shown in Figure 1. 

Note that the generalized enclosure# has a cover# on- 
top-of something and that the generalized enclosed-disc- 
drive# has both a disc-drive# and an enclosure# . Thus 
generalizations have been made at the top level of the com- 
ponent hierarchy (i.e., enclosed-disc-drive# ) and at lower 
levels (i.e., the enclosure# ). By organizing all its data in 
this way, RESEARCHER can act as an intelligent information 
system. 

The justification for this process of generalizing at all 
levels is best explained by Herbert Simon’s idea of near- 
decomposability (Simon, 1981). A nearly decomposable sys- 
tem is one in which the interaction among the components 
that make up the system is weaker than the glue the keeps 
any one component intact. The contention is that systems 

can evolve in complexity by making use of this property and 
that a hierarchy is the natural form into which a complex 
system usually develops. Thus, sub-parts of any hierarchy 
become stable as the system grows. This indicates that sta- 
ble components are important and should be recognized as 
being so by an intelligent understander of such systems. The 
understanding of hierarchies is discussed further in (Wasser- 
man, 1984). 

RESEARCHER is not the only system that has tried to 
represent component hierarchies within a generalization hier- 
archy. NETL (Fahlman, 1979) uses both PART-OF and IS-A 
links in representing knowledge in a highly parallel compu- 
tation system. Although the interaction between the com- 
ponent and generalization hierarchies is apparent in NETL, 
it is not used to advantage in the encoding scheme. 

Another program (unnamed) (Hayes, 1977) employed a 
categorization hierarchy that classified animal body-part hi- 
erarchies. Thus, a generalization (IS-A) hierarchy was used 
to classify PART-OF hierarchies. This work, although some- 
what similar to RESEARCHER’s methods in that it combined 
generalization and representation in the same functional way, 
required a human expert to implement the knowledge struc- 
tures and modify them as needed. 

A few observations have become clear while working on 
RESEARCHER. A hierarchy understanding system that is to 
be used for real-world knowledge acquisition about physi- 
cal objects and be truly intelligent needs to have the abil- 
ity to automatically build representations (no human intcr- 
vention); dynamically reorganize memory to better reflect 
learned knowledge; make use of the near-decomposability of 
hierarchies to store information in a compact form; recog- 
nize and exploit the interrelationship of the representation 
language with the generalization method use primitives of 
human cognition. 

Summary. RESEARCHER carries the idea of generalization- 
based memory into the domain of physical object under- 
standing. Frames are shared in two orthogonal hierarchies: 
the components hierarchy and the generalization hierarchy. 
This permits objects to be represented concisely and orga- 
nized according to what they have in common. 

The scheme used to encode relations among objects is 
based on semantic primitives that serve to reduce natural 
language relation expressions into a closed class, in much 
the same way as CD does for actions. 

Conclusion 

The six programs presented above by no means com- 
pletely span all the NLP programs that have contributed to 
the progress made in knowledge representation and gener- 
alization. They do, however, form a representative set of 
programs that demonstrate the kind of research into physi- 
cal object understanding and generalization systems that has 
taken place in the past ten years or so. 

The large number of programs that are intended to in- 
vestigate the benefits of some particular knowledge structure 
is, of course, necessary. Obviously, one of the first consid- 
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enclosed-disc-drivel 

/ I 
- - disc-drivel - enclosure1 ----- 

I 1 1 I / on-top-of \ 
motor# 1 disc# 1 cover# -------> support-member# 

spindle# r/w-head# 

enclosed-disc-drive2 

/ I 
- - disc-drive2 - enclosure2---------- 

1 I 1 I / on-top-of \ / \ 
motor# I disc# 1 cover# ----> base# / \ 

spindle# r/w-head# / surr \ 
b-filter# ----> r-filter# 

RESEARCHER generalizes what these two instances have in common to arrive at the structure: 

Figure 1. 

enclosed-disc-drive# 

/ I 
-- disc-drive# - enclosure# ------- 

l ’ d/sc# 1 C6yer#on-top-of \ 
motor# 1 -------, < > 

spindle# r/w-head# 

- 

erations in any AI system is how to represent information. 
Thus, many researchers concentrate on developing a good 
representation system, often with the intent of using it in a 
full natural language comprehension program at some later 
time. 

This argument goes a long way in explaining the dearth 
of programs that make use of a generalization process. Only 
a few systems, such as IPP, RESEARCHER, CYRUS, NETL, 
and ENHANCE, focus attention on the use of generalization 
as an understanding mechanism. It seems that using gener- 
alization as the basis of, instead of as an add-on to, of a NLP 
program is a good way to proceed. 

The brief history of NLP programs presented here has 
demonstrated that in a fairly short time great progress has 
been made. The next, ten years should see rapid growth, 
particularly in the area of applying generalization principles 
to natural language processing programs. 
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