
RI Revisited:
Four Years in the Trenches

Judith Bachant John McDermott

Intelligent Systems Technology Group Department of Computer Science
Digital Equipment Corporation Carnegze-Mellon University
Hudson, Massachusetts 01’749 Pittsburgh, Pennsylvania 15213

Abstract

In 1980, Digital Equipment Corporation began to use a rule-based
system called Rl by some and XCON by others to configure VAX-
11 computer systems In the intervening years, Rl’s knowledge has
increased substantially and its usefulness to Digital continues to grow.
This article describes what is involved in extending Rl’s knowledge base
and evaluates Rl’s performance during the four year period.

IN THE SUMMER 198 1 ISSUE of the AI Magazine, an
article entitled “Rl: the formative years” described how a
rule-based configurer of computer systems had been devel-
oped and put to work (McDermott, 1981). At the time that
article was written, RI had been used for only a little over
a year and no one had much perspective on its use or use-
fulness. RI has now been configuring computer systems for
over four years. This experience has provided some insight
into the ease and difficulty of continuing to grow an expert
system in a production environment and into the kind of per-
formance expectations it might be reasonable to have about
a current generation rule-based system.

The approach Rl takes to the configuration task and the

A large number of people have played critical roles in Rl’s development.
Among those who deserve special mention are John Barnwell, Dick
Caruso, Ken Gilbert, Keith Jensen, Allan Kent, Dave Kiernan, Arnold
K&t, Dennis O’Connor, and Ed Orciuch. We want to thank Allen
Newell, Dennis O’Connor, and Ed Orciuch for their helpful comments
on earlier drafts of this article

way its knowledge is represented have been described else-
where (McDermott, 1980) and (McDermott, 1982). Briefly,
given a customer’s purchase order, Rl determines what, if
any, substitutions and additions have to be made to the or-
der to make it consistent, complete, and produce a num-
ber of diagrams showing the spatial and logical relationships
among the 50 to 150 components that typically constitute a
system. The program has been used on a regular basis by
Digital Equipment Corporation’s manufacturing organiza-
tion since January, 1980. Rl has sufficient knowledge of the
configuration domain and of the peculiarities of the various
configuration constraints that at each step in a configuration
task it is usually able to recognize just what to do; thus it
ordinarily does not need to backtrack when configuring a
computer system.

At the beginning of Rl’s development, no clear expecta-
tions existed about how long it would take to collect enough
knowledge to make Rl an expert. We did expect that at some
point the rate at which Rl would acquire new knowledge
would at least slow, if not stop. We even thought that
Rl would be done eventually (that is, Rl would enter a
maintenance mode of well-defined and minor additions, in-
terspersed with occasional bug fixes.) It is difficult now
to believe Rl will ever be done; we expect it to continue
to grow and evolve for as long as there is a configuration
task. It may be that if Rl’s domain were less volatile,
Rl would not require perpetual development. But it is

THE AI MAGAZINE Fall 1984 21

AI Magazine Volume 5 Number 3 (1984) (© AAAI)

NU MBER OF RULES
3250 -

3000 -

2750 -
2500 -

2250 -

2000 -

1750 -

1500 -

1250 -
VAX-11/780 (10/79)

VAX-11/725 (11/83

PDP-11/44 (11/83:

PDP-11/24 (11/83:

MICROVAX-1 (10/83:

MICRO-PDPl V/83:

VAX-11/730 (3/82)

I
l/1/80

I

l/1/81

Rl’s Growth

Figure 1.

I
l/1/82

I
l/1/83

I
./l/84 1

probably also true that if the domain were less volatile, the
task would not require a knowledge-based system.

The early expectations about Rl’s performance were
likewise vague, except just as Rl was beginning to be used,
a Digital employee responsible for the configuration process
predicted that for Rl to be useful, 90% to 95% of its
configurations would have to be perfectly correct. This per-
formance goal is interesting, not so much because RI took
three years to reach it, but because it turned out to be com-
pletely wrong. Rl’s task is just one small part of a process
designed to ensure that high quality computer systems are
built. Significant redundancy exists in the process precisely
because historically no individual has both known enough
about configuration and been able to pay close enough at-
tention to each order to be entrusted with the total respon-
sibility. Rl was able to provide significant assistance even
when it knew relatively little because the people who used Rl
did not demand more of it than of its human predecessors.
The one definite performance expectation almost everyone
had about Rl in its early days was that it would always
configure the same set of components in the same way. It
is obvious now and should have been obvious then that this
expectation could have been satisfied only if Rl had been
discouraged from becoming more expert.

These expectations about Rl’s developmental and per-

formance histories introduce the two parts of the article. In
the next section, the focus will be on the kind of involvement
required to extend Rl’s knowledge base. The final section’s
focus will be on the kinds of erroneous behavior Rl has ex-
hibited.

Rl’s Developmental History

This section provides a somewhat anecdotal trip through
Rl’s past. Although it mentions the first year, when most of
the activity was at Carnegie-Mellon University [CMU], the
primary focus is on the four following years, after Rl began
to be used at Digital. When CMU handed over the initial
version of Rl to Digital in January 1980, Digital scrambled
to put an organization in place that could continue its de-
velopment. This organization, currently known as the Intel-
ligent Systems Technologies group, began with only five in-
dividuals, none of whom had any background in AI. Over the
past four years, the group has grown to 77 people responsible
for eight different knowledge-based systems, one of which is
Rl. As Rl was developed, an attempt was made to effect
a division of labor between those people responsible for rep-
resenting Rl’s knowledge and those responsible for collect-
ing and validating that knowledge. Of the initial technical
people, one was an engineer who played the roles of both

22 THE AI MAGAZINE Fall 1984

a domain expert and of an interface to other domain ex-
perts outside the group; the other three people took the
knowledge collected by the engineer and formulated it so it
was compatible with Rl’s other knowledge. When the or-
ganization was a little over two years old the technical group
had grown to eight people, five of whom were responsible for
encoding the knowledge collected and validated by the other
three. The size of the Rl technical group is still about eight.
Now, however, less of a distinction exists between the people
responsible for knowledge encoding and those responsible for
knowledge collection.

The Knowledge Rl Acquired

Over the past four years, the amount of effort devoted
to adding knowledge to RI has remained relatively constant
at about four worker-years per year. And Rl’s knowledge
has grown at a relatively constant rate, though the focus has
shifted around. At times the task of eliminating inadequacies
in Rl’s configuration knowledge has received the most atten-
tion; at other times, the group’s energies have been directed
primarily at broadening Rl’s abilities in various ways. Figure
1 shows the rate at which Rl’s knowledge has grown; the
points in time at which Rl became able to configure new sys-
tem types are marked. Figure 1 does not show the amount
of product information to which Rl has access. This infor-
mation, which is stored in a data base, is a critical part
of the body of information needed to configure a computer
system correctly. Rl retrieves the description of each com-
ponent ordered before it begins configuring a system; while
configuring the system, if it determines some piece of re-
quired functionality is missing, it searches the data base for
components that will provide that functionality. Rl currently
has access to almost 5500 component descriptions. We do
not have good data on the rate at which the data base has
grown, but what data we have suggest the growth rate is
quite irregular.

In this article, Rl’s growth is measured in number of
rules. The following values hint at the amount of knowledge
an Rl rule contains. The average conditional part of one
of Rl’s rules has 6.1 elements (the minimum number is 1
and the maximum 17). Each element is a pattern that can
be instantiated by an object defined by as many as 150 at-
tributes. On the average, a pattern will mention 4.7 of those
attributes (the minimum is 1 and the maximum 11) and
restrict the values which will satisfy the pattern in various
ways. The tests are mostly simple binary functions that
determine whether some value in the object has the specified
relationship to some constant or to some other value in that
or another object. The action part of an average rule has 2.9
elements (the minimum is 1 and the maximum 10). Each
element either creates a new object or modifies or deletes
an existing object. A rule can be applied when all of its
condition elements are instantiated.’

‘For additional information about the nature of Rl’s rules as well as
those of other systems written in 0ps5, see (Gupta, 1983)

Work on RI began in December 1978. During the first
four months, most of the effort was on developing an ini-
tial set of central capabilities. The initial version of Rl was
implemented in OP%, a general-purpose rule-based language
(Forgy, 1979). By April, Rl had 250 rules. During the same
period, a small amount of effort was devoted to generating
descriptions of the most common components supported on
the VAX-111780. After this demonstration version of Rl had
been developed, most of the effort during the next six months
was divided between refining those initial capabilities and
adding component descriptions to the data base; in October
1979, Rl had 750 rules and a data base consisting of 450 com-
ponent descriptions. During the following six months, little
development work was done on Rl either at Digital or CMU
because the main focus was on defining a career path for Rl
within Digital. But beginning in April 1980, three months
were spent at CMU in rewriting the OPS4 version of RI in
OPS5 (Forgy, 1981). Given that the knowledge was already
laid out in the OPS4 version, a variety of generalizations
emerged and the resulting system, though more capable, had
only 500 rules.

By the end of 1980, Rl had 850 rules, most of which
were added by people at CMU to provide Rl with additional
functionality; the primary focus at Digital during the second
half of 1980 was on adding component descriptions to the
data base and providing a group of people with the skills
to take over the continued development of Rl. Most of the
work on Rl since early in 1981 has been done by people at
Digital. By March 1981, the group at Digital had extended
RI so it could configure VAX-11/750 systems. During the
remainder of 1981, most of the group’s effort was focused
on refining Rl’s knowledge of how to configure VAX-111780

and VAX-11/750 systems. In 1982, the focus changed to ex-
tending Rl to cover more systems. While some effort was
spent in improving Rl’s performance, substantial effort was
spent in extending its scope. By March, a few months be-
fore the VAX-111730 was announced, Rl was able to configure
VAX-11/730 systems, and by July, Rl was able to configure
PDP-11/23+ systems. At that point, Rl’s knowledge base
consisted of about 2000 rules. The remainder of 1982 and the
first few months of 1983 were devoted primarily to refining
that knowledge. At that point, a concerted effort was made
to extend Rl’s capabilities so it could configure all the sys-
tems sold by Digital in significant volume. When that task
was finished in November 1983, Rl had about 3300 rules
and its data base contained about 5500 component descrip-
tions. While a significant amount of time will continue to be
devoted to extending Rl’s capabilities to cover new systems
as they are announced, effort will also be spent in continuing
to deepen Rl’s expertise in the configuration domain.

As Digital has become more dependent on Rl, it has be-
come increasingly important that Rl be highly reliable. Thus
substantial attention has been paid to the question of how to
combine the demands of reliability with those of continuous
development. Early on, little attention was paid to formaliz-
ing the developmental process; as problems were reported,

THE AI MAGAZINE Fall 1984 23

NUMBER
OF RULES

THE INITIAL Rl 777

THE CURRENT Rl 3303
VAX-111785 2883
VAX-11/780 2883
VAX-111750 2801
VAX-111730 2810
VAX-11/725 2788
MICROVAX-1 1516
MICRO-PDPll 1516
PDP-11/23+ 1516
PDP-11/24 2786
PDP-11/44 2786

AVERAGE AVERAGE AVERAGE PERCENT OF NUMBER
RULES PER NUMBER RULE KNOWLEDGE OF PARTS

SUBTASK OF PARTS FIRINGS FREQUENTLY IN THE
ORDERED USED DATABASE

76 88 1056 44% 420

10 3 78 1064 47% 5481
9.8 163 2654 24% 3398
98 171 1925 31% 3398
97 111 1300 29% 2915
97 85 1141 29% 2489
97 34 622 8% 1981
73 34 546 18% 1490
73 44 546 18% 1828
73 49 608 20% 1894
9.7 43 567 13% 1763
97 43 733 15% 1764

A comparison of the initial and current versions of Rl.

Figure 2.

individuals would collect the needed knowledge, add it to the
system, and depending on the press of other problems, do
more or less testing to determine that the overall capability
of the system had not worsened. As time passed, the de-
velopmental process acquired substantially more structure.
Planned release dates are now preceded by extensive testing
of the system.

The article describing the initial version of Rl (McDer-
mott, 1982) provides some insight into the nature of Rl’s
knowledge by presenting a variety of measurements. Figure
2 compares the measurements from the initial version of Rl
with corresponding measurements from the current version.
Since a significant amount of the knowledge in the current
version is specific to just a subset of the system types it can
configure, Figure 2 provides the measurements for system-
specific configurers as well as for the union of those config-
urers. Until recently, instead of a single version of Rl that
could configure all system types, there was a version of Rl for
each system type. Each of these versions consisted of a set of
from 50 to 100 rules specific to a system type and two much
larger sets of rules; it shared one of these rule sets with all of
the other system types and the other with the system types
having the same primary bus. About 300 of the shared rules
were themselves specific to just one of the system types; each
of these rules was included with the shared rules because it
was relevant to a shared subtask.

Rl’s rules are grouped together on the basis of the
subtask to which they are relevant; the “number of rules”
column displays the total number of rules available to Rl
in performing the configuration task, and the “average num-
ber of rules per subtask” column displays the mean number
of rules in a group. The 3303 rules the current Rl has is
the union of the rules of each system-specific configurer; the
10.3 rules per subtask is the union of the groups of rules the
system-specific configurers bring to bear on a particular task.
The “average number of parts ordered” column displays the
number of components Rl has to configure. This number

is significantly larger than the number of components listed
on a purchase order since those line items actually refer to
bundles of configurable components.

The numbers in the “average rule firings” and “percent
of knowledge frequently used” columns are based on small
sets of runs. For the initial Rl, the numbers came from run-
ning Rl on 20 typical orders. For the current Rl, the num-
bers came from running each system-specific version of Rl
on about 20 orders of comparable complexity. The “average
rule firings” column shows that substantially more is done
in configuring a VAX-111780 order now than was done ini-
tially; almost twice as many rules are applied. Two factors
contribute to this increase. The configuration task has been
enlarged by definition (i.e. there is now more to do), and
second, there has been an increase in the average number of
components per order.2

The “percent of knowledge frequently used” column
shows what percentage of the rules are used at least once
in at least one of the sample runs. Thus for the initial Rl,
44% of the 777 rules were applied at least once over the 20
sample runs, and for the current Rl, 47% of the 3303 rules
were applied at least once over the approximately 200 sample
runs. The fact that a substantial fraction of Rl’s knowledge
is used only rarely is, of course, just what we would expect
of a knowledge-based system. But the percentages for the
system-specific versions are somewhat misleading. We would
expect the percentage for each version to be lower than the
overall percentage because each was run on only about 20
orders. However, because each version has knowledge that
is not relevant to its tasks, the percentages for the versions
are lower than they otherwise would be. The percentages for
the VAX-111780, the VAX-111750, and the VAX-111730 are
the most accurate, but even they are too low by several per-
centage points. Since the nature of the knowledge used by

20n the average, 1.67 VAX-11/780 cpu minutes are required to
configure an order.

24 THE AI MAGAZINE Fall 1984

each version is quite similar, it is likely that the percentage
of the knowledge frequently used by each is pretty much the
same-somewhere between 35% and 40% .

About 65% of the 2526 rules added to Rl since 1980
extend Rl’s general configuration capabilities; only about
35% of the rules are specific to a single system type. Of the
65% at least 15% were added to correct or refine knowledge of
how to perform some subtask. This lower bound is suggested
by the fact that the “average number of rules per subtask”
increased by 30% during the past four years (i.e., about 230
rules were added to the groups of rules applicable to the
subtasks the initial Rl knew how to perform); adding a rule
to the group applicable to some subtask is almost invariably
done to correct or refine the knowledge of how to perform
that subtask. The 15% is a lower bound because as the
knowledge required to perform some subtask grows, it may
become evident that what was viewed as a single subtask
can be viewed as two or more simpler subtasks; what we
do not know is how much the average number of rules per
subtask would have grown if this subtask splitting had never
occurred.

The Kinds of Changes Rl Has Undergone

As it turned out, the task of developing Rl had just
begun when it was first put into use. In this section, we
attempt to give a flavor of the kinds of changes that have
been made to Rl over the past four years by examining a few
examples in some detail. Our primary purpose in examining
the growth of Rl’s knowledge is to better understand what
is involved in adding knowledge to such a system. We can
identify four reasons why knowledge was added to Rl:

l To make minor refinements (adding knowledge to
improve Rl’s performance on an existing subtask);

l To make major refinements (adding the knowledge
required for Rl to perform a new subtask);

l To extend the definition of the configuration task in
significant ways.

Ordinarily when people talk about why knowledge is
added to an expert system, they seem to have the first reason
in mind. As we have seen, of the more than 2500 rules
added to Rl during the past four years, the data in Figure
2 suggest that more than 10% have been added to make
minor refinements, fewer than 40% have been added to make
major refinements, at least 35% have been added to provide
functionality needed to deal with new system types, and
perhaps as many as 15% have been added to extend the
definition of the task in significant ways.

Minor Refinements. A knowledge addition of the first
type is required when Rl cannot perform some subtask that
it was thought to be able to perform. For example, over the
years RI has made several errors involving the placement
of backplanes in boxes. One instance of such an error has
to do with a backplane’s location. In one variety of a 24
slot box, because of power considerations, a backplane is

not permitted to cover slot 10. Rl knew that if it covered
slot 10 when placing a backplane, it needed to move that
backplane toward the back of the box so the backplane’s front
edge would be in slot 11. Rl’s knowledge was incomplete
because it did not know it had to move any previously placed
backplane from the front of the box toward the middle so
that its back edge would be in slot 9. This backplane has to
be moved toward the middle because leaving a larger space
between the two backplanes would mean the standard cable
used to connect backplanes could not be used (since it is not
long enough). Fixing Rl was a straightforward task, but it
required a certain amount of creativity (i.e., it was not just
a matter of “adding some more domain knowledge.“) What
Rl lacked was any notion of “deliberately vacant space.”
In order to provide rules that could recognize situations in
which blank space was inappropriately positioned, Rl had
to have the concept of blank space and an understanding of
how to make a note that a particular space had been left
blank on purpose. Given this, it was straightforward to add
a few rules that recognized when some piece of blank space
was inappropriately located and swap it with a backplane.

Major Refinements. A knowledge addition that results
in a major refinement to Rl can be made in two kinds of
situations: when Rl does not have any knowledge about how
to perform some subtask, and when its knowledge of how to
perform some subtask becomes so tangled that ways need
to be found of representing the knowledge more generally.
Brief examples of both situations are presented below; in the
following section we provide a more lengthy analysis of one
attempt to rewrite a set of rules, initiated almost purely to
increase generality and understandability.

Most of the modules Rl configures on a UNIBUS consist
of one or more boards that plug into backplanes which go
in boxes. If multiple boards are required, they are usually
placed next to each other in the same backplane. A situation
unfamiliar to Rl arose when a module was designed with
boards on two buses. Its first board was to be configured
in an SPC backplane while the three remaining boards were
to be configured in a special backplane that had to be lo-
cated in the same box as the first board, but not in the same
backplane. One way of extending Rl to handle this new
component would have been to use a look-ahead strategy;
Rl would have checked for space, power, and cabling con-
straints on the special backplane before configuring the first
board. An alternative would have been a simple backtrack-
ing strategy. The approach Rl actually took involved a com-
bination of both look-ahead and backtracking. RI applies
the same rules it uses for other modules to configure the
first board; a few special rules then try to foresee abstract
constraint violations involving the rest of the boards. If a
problem is found, the first board is unconfigured. If no con-
straints are violated, power and space are reserved for the
remaining boards.

Early in Rl’s history, only two types of panels needed to
be considered. A few rules were sufficient to guard against
the possibility of trying to configure two panels in the same

THE AI MAGAZINE Fall 1984 25

space in a cabinet. Templates were used to describe panel
placement possibilities; the rules recognized when some par-
ticular space was already occupied and avoided that space.
As Digital introduced new products the situation became
increasingly complicated until five different types of panels
as well as disk drives and boxes could potentially occupy
the same space with differing degrees of overlap. Because
the original approach required all possible conflicts to be
enumerated, it became increasingly unwieldy as the prob-
lem grew in complexity. The new solution involved redesign-
ing the templates so the information they contained could
be manipulated by a small number of more general rules
and by making minor changes to the action parts of about
60 already existing rules that dealt with cabinet space deci-
sions. This strategy worked well for about a year until Digital
redesigned its cabinets to comply with new FCC regulations.
At that point, the templates became too unwieldy because of
the sheer number of possible individual locations; since the
redesign also eliminated most of the irregularities of the pre-
vious problem, it became possible to simplify the templates
and keep track of potential conflicts with a few very general
rules.

New System Types. Providing Rl with the functionality
it needed to deal with new system types has constituted a
significant portion of the development effort. Since major
configuration differences exist among the various buses sup-
ported by different CPU types, it was not clear initially
how much configuration knowledge is common across sys-
tem types. When a VAX-111750 configurer was developed,
the VAX-111780 configurer was used as a model, but the
knowledge bases were initially completely separate. Once
the VAX-111750 configurer had enough knowledge to be use-
ful, it was merged with the VAX-111780 configurer. On the
other hand, the VAX-II/730 configurer was integrated, from
the beginning of its development, with the older Rl; the new
version was developed by creating a small knowledge base
(consisting of about 100 rules) specific to the VAX-11/730,
adding some rules specific to the VAX-11/730 to the common
knowledge base, and generalizing several of the rules in that
common knowledge base. This approach worked well for the
VAX-111730, but when we turned our attention to the PDP-
11/23+, we reverted to the approach we had used for the
VAX-11/750. Several factors were involved in this decision.
Rl, up to this point, knew only of VAX-11 systems, which
are UNIBUS and MASSBUS based, while the PDP-11/23+ is
based on the LSI22 bus. The rules for configuring these buses
have little in common. Moreover, the PDP-11/23+ supports
a variety of operating systems, requires a completely different
paneling structure, and assumes different power and capacity
characteristics for its boxes and backplanes. Since the PDP-
11/23+ is quite dissimilar to the VAX-11 systems, a separate
version of Rl was developed for this task. Each of the sub-
sequent system configurers was integrated with either the
VAX-11 or the PDP-11/23+ system (depending on whether
it had a UNIBUS or a LS122 bus). Recently, it was decided
that in a production environment, it would be advantageous

to have one single system; by April 1984, all of the system
configurers had been merged. Future system type additions
will be part of this single version of Rl from the beginning
of their development.

Adding the knowledge required to deal with new system
types is non-trivial even when the new type is quite similar to
types Rl already knows how to configure. Part of the effort of
extending Rl’s configuration capabilities to cover a new type
is due simply to the added amount of knowledge. For each
of the types, we have had to add a great deal of data to the
data base as well as make extensive rule changes and addi-
tions. Many of the decisions involve how to represent the new
knowledge in the rules, but new data base representations
are sometimes also required. The full extent of the effort
varies, depending on the degree of similarity between the
added system type and the types Rl can already configure.
When there is a high degree of similarity, the form in which
the existing knowledge is represented provides substantial
guidance for how to represent the new knowledge. When the
new system is quite dissimilar, substantial amounts of design
are required.

Extending the Task Definition. As Rl’s role in Digi-
tal’s manufacturing process has evolved, knowledge has been
added to Rl that extends the definition of its task. For
example, Rl was extended in January of 1983 to handle
“multiple-CPU” orders. Rl was originally designed to deal
with orders containing a single CPU. But multiple-CPU or-
ders have become increasingly common, especially with the
advent of smaller system types where multiple identical sys-
tems and/or several different systems on the same order are
the norm. Part of the challenge of extending the definition
of Rl’s task involves finding a way to realize some new
capability that does not require extensive modifications to
Rl. In this case, we avoided the temptation of trying to
modify Rl to configure multiple, loosely coupled systems
simultaneously. Instead, a few new rules (originally about
10) were written to group the components into individual
systems; each system was then configured in turn. Changes
had to be made to 5 existing rules that determine what to
configure and what order information to save; a few external
initialization and output routines also had to be modified.
The hard part was determining how Rl’s task definition
could be extended most simply.

A substantial change to RI in July of 1982 modified it to
deal with a different categorization scheme for components.
The component descriptions had been developed exclusively
for Rl and were tailored to the configuration task. As Digital
developed other knowledge-based systems for other purposes,
it became desirable to have a common data base, where
the components were categorized in a less ad hoc fashion.
Before Rl could use the new descriptions, nearly all of its
rules (about 2000 at the time) had to be changed, and for
several hundred of these rules, the task of reformulation took
considerable thought.

While the difficulty of making changes of any of the four
types we have just described is highly dependent on the na-

26 THE AI MAGAZINE Fall 1984

ture and scope of the knowledge that needs to be added, it
also appears to be dependent on the amount of knowledge the
system already has. In the early days, when’R1 was small,
people who joined the project were able, reasonably quickly,
to acquire enough of an understanding of the configuration
task and of Rl’s approach to it to become competent devel-
opers. But now that Rl has grown substantially, its sheer
magnitude seems to serve as a barrier to the would-be devel-
oper. It takes much longer now for someone who joins the
group to gain an adequate understanding of how Rl does
configuration.

A Change over the Years

To provide another view of Rl’s development, we have
analyzed the changes in Rl’s knowledge for two closely re-
lated tasks. One of the tasks involves deciding what back-
plane should hold the next set of modules. The other is a
subtask that may or may not be performed depending on
what the backplane selection possibilities are. The decision
of what backplane to configure next is constrained by the
pinning type of the modules, the space and power available
for them, the current length of the bus and its loading, and
the number and mix of backplanes that have been ordered.
A good backplane choice is one that minimizes the number
of additional components that have to be added, while satis-
fying all the constraints. The subtask is performed if the
pinning type of the next module to be configured is SPC. In
this case, two different sized backplanes could be used, so Rl
must do some analysis of the implications of selecting each.
Figure 3 shows how Rl’s knowledge of these tasks has devel-
oped; the development can be viewed as a series of minor
refinements, followed by a major refinement.

In December 1980, Rl’s knowledge of how to perform
the two tasks consisted of 36 rules, 23 rules for the selection
task and 13 rules for the subtask. In October 1983, Rl’s
knowledge consisted of 73 rules, 54 for the selection task and
19 for the subtask. During the intervening three years, 40
rules were added, 3 rules were eliminated, and 11 rules were
changed. This alteration is consistent with the knowledge-
based approach, where the initial instinct is to solve a prob-
lem by adding more knowledge. It suggests that the rules
eventually formulated are for the most part adequate, but
that it takes a long time to collect the relevant knowledge.
The fact that only 11 rules were changed may be a little
misleading since 27 of the added rules were special cases of
existing rules, implying that the conditional part of many of
the unchanged rules were inadequately discriminating. Of
the rules that were changed, the changes were almost all in
the conditional part and were in the direction of making the
rules increasingly discriminating.

In October 1983, one of the people working on Rl ob-
served that if Rl were given more knowledge of how to assess
the likely implications of various decisions, it would need to
backtrack even less often. In the course of reworking this
capability, the number of rules remained constant, but the

12/15/m N/15/80 12/15/80

TOTAL RULES 36 73 73

Rules Added 40 31
Rules Deleted 3 31
Rules Changed 11 32
Condition Elements Added 11 8
Condition Elements Deleted 1 72
Condition Elements Changed 15 40
Action Elements Added 1 5
Action Elements Deleted 0 8
Action Elements Changed 1 13

Two sample subtasks

Figure 3.

level of expertise improved dramatically. Of the rules in
the October version, 31 were eliminated and, coincidentally,
31 were added; of the remaining 42 rules, 32 were changed.
Again, this alteration is what we might expect of a situation
in which a capability is being substantially extended. When
the knowledge is all laid out and it is clearer what other
pieces of knowledge are relevant to the task, it becomes more
obvious how to represent the knowledge cleanly. In this case,
the biggest change was the elimination of condition elements.
This happened because it became clear that the rules were
too constraining; that is, the rules had typically been added
to deal with a particular error, and so the October version
had a small set of overly general rules (from the initial ver-
sion) and several more overly specific rules. Seeing all the
knowledge laid out made it possible to hit the right level of
specificity.

Conclusions about Growth

The following conclusions purport to provide guidance to
the developers of any knowledge-based application system.
We are of course not at all sure what aspects, if any, of the
experience with Rl at Digital will turn out to be typical.
It seems reasonable to believe, however, since Rl’s task is
knowledge-intensive, that the experience with Rl relating to
the rate at which it has acquired knowledge and the difficulty
of adding that knowledge will at least have relevance to other
attempts to put knowledge-based systems to work on real
tasks.

Even though the experts claimed in 1979 that Rl had
most of the knowledge it needed, a great deal of knowledge
has been added to Rl over the past four years. There is no
more reason to believe now than there was then that Rl has
all of the knowledge relevant to its configuration task. This,
coupled with that fact that Rl deals with an ever-changing
domain, implies its development will never be finished. Thus
users of systems like Rl will have to be emotionally prepared
to interact with a less than perfect program. They will have
to be as forgiving of ignorance in these expert systems as
they are of ignorance in humans who are ever becoming more

THE AI MAGAZINE Fall 1984 27

expert.
Though much of Rl’s knowledge was added to correct

or complement existing knowledge, a significant ‘part of the
additions came as a result of Rl having to have the knowledge
to perform new tasks. Some of these were the result of Digital
introducing new computer system types and the rest resulted
from the users’ observations that things would be better if Rl
could do one more thing. We believe all expert systems will
be hounded to continue to grow for both of these reasons.
Tasks that expert systems are good for are just those whose
objects change significantly over time. Moreover, in such
tasks no clear boundaries delimit what should and should
not be within the province of the expert. Thus, whenever an
expert system finds itself on a boundry, its public encourages
it to extend the boundary.

Situations arise in which the task of adding a piece
of knowledge is extremely straightforward because the new
knowledge needs to be represented and used in virtually the
same way as the system’s existing knowledge. But, for the
most part, adding a piece of knowledge involves some amount
of creativity. In domains other than configuration (or at
least in diagnostic as opposed to constructive tasks) domain
knowledge appears to be substantially more regular and can
be added routinely. Significant, but as yet undiscovered,
regularities in configuration knowledge may exist that will
someday allow it to be added more easily. But for now, it
is important to at least be open to the possibility that a
knowledge-based system will forever have to be surrounded
by people who know how to do development. They will be
called upon to be innovative and adaptable. Although it may
be the case that adding knowledge incrementally is easier
than rewriting or modifying a traditional program, by no
means can this task be done without substantial amounts of
problem solving.

It was clear before Rl was a year old that the incremental
addition of knowledge resulted in a system with a significant
amount of redundancy and a penchant for ad hocery. To the
extent that adding knowledge to the system involves human
intervention, this general lack of cleanliness and conciseness
provides an obstacle to the system’s further development.
Few expert systems are likely to be redeveloped (as Rl was
in 1980, but not since). However, we suspect that from time
to time, some part of every expert system’s knowledge will
become so convoluted that its developers will take the time
to re-represent that knowledge.

Rl’s Performance

Before Rl began to be used, each system Digital received
an order for was configured by a technical editor, typi-
cally on the day before the system was to be assembled
and tested. The technical editor examined each order to
determine whether configuration constraints required addi-
tional or different components and then specified some of the
relationships among the components on the order. Though
the task was performed at a fairly high level of abstraction, it

seldom took fewer than 5 or 10 minutes to configure an order,
and complex orders took substantially more time. When Rl
began to be used, it essentially became a technical editor.
But since it was not clear initially how well Rl was going to
do as a technical editor, some of the people who had been
technical editors stayed to watch over Rl. In effect, they be-
came Rl’s mentors. Every order configured by Rl has been
examined, more or less closely, by a mentor and if the mentor
believed the configuration was lacking in any respect, he or
she reported the problem to the Rl development group.

Although Rl is an expert system in the sense that the
body of knowledge it uses to perform the configuration task is
acquired by human experts over a period of years, its task is
different from the task that used to be performed by the tech-
nical editors because Rl configures systems at a significantly
greater level of detail than they did. Because its task is
more extensive, it is hard to answer the question: Does Rl
do as well at the technical editing task as human experts do?
The task Rl actually performs is the old technical editing
task plus part of the task performed by the technician who
physically assembles the system (since the technician has to
descend to Rl’s level of detail to do his job). But the tech-
nician’s situation is different from Rl’s in that the technician
has the physical components that need to be assembled and
tested in front of him and can discover when components
are missing or misconfigured in more direct ways than are
available to Rl. Thus we have not tried, in this article, to
compare Rl’s performance with that of the human experts.
The closest we come to examining that relationship is with
the bogus problems category. A bogus problem is one that
a human expert reports as an Rl error, but that on further
examination turns out to have been a failure on the part of
the expert to appreciate correctness.

The data presented in this part of the article leave some-
thing to be desired; part of the problem is that it was not
clear, at any point during the past four years, how frequently
Rl’s performance needed to be sampled. Since knowledge-
based systems continue to be developed incrementally as
they are used, it was obvious that collecting performance
data would be an integral part of using the system. It was
also clear that the more data that were collected, the better
we would understand the extent to which Rl’s knowledge was
incomplete. But all that is really required to drive the devel-
opmental process is enough data to give the people collecting
and encoding Rl’s knowiedge plenty to do. Since finding in-
adequacies in Rl’s knowledge has never been very hard, more
attention was given to the task of extending and refining Rl
than to the data collection task. As a result, there are a
few periods, in two cases extending for months, in which the
data we have are incomplete. For the most part, however,
we have some information about how well Rl performed on
each order it configured.

Even if we had information about each order Rl config-
ured, our data would still be unsatisfactory because our un-
derstanding of how to collect the relevant data has grown
slowly. Since people who have the responsibility of review-

28 THE AI MAGAZINE Fall 1984

ing each of Rl’s configurations have little understanding of
how Rl does what it does and where and how it can err,
they can only report error manifestations. Devising a process
that makes it fairly straightforward to link manifestations to
causes (so, for example, the number of instances of each er-
ror type can be determined) took some time. Initially the
process used paper and pencil. A second issue, then, was
how to design a program that could assist with the data
collection task. Because it took time to devise such a pro-
gram (a lot of time since it had low priority), a significant
part of our task has been to reconstruct, from incomplete
descriptions of error manifestations, what the actual errors
were. We feel relatively confident in the overall results, but
are sure a number of minor inaccuracies exist.

Before presenting the performance data, we need to
discuss briefly how “percentage of totally correct orders”
came to be accepted early as the metric for measuring Rl’s
performance. The problem with this metric, of course, is
that it does not discriminate between terrible performance
(gargantuan errors) and near perfect performance (tiny, al-
most insignificant errors). In retrospect, it is clear that hav-
ing some idea of the seriousness of each error would be help-
ful in evaluating Rl. But when RI first started to be used, it
was with the expectation that there were only a few things
it did not yet know, and the only question in people’s minds
was how many weeks it was going to take before Rl knew
everything. Within that context, it is not at all surprising
that the all or nothing metric was selected; anything else
would have seemed too fine-grained.

Some Performance Data

Figure 4 provides a detailed account of Rl’s performance
over the past four years. The information is presented by
quarter, beginning in January 1980 and ending in Decem-
ber 1983. Three major problem categories exist: rule prob-
lems, data base problems, and other problems. For rule and
for data base problems, as well as for total problems, the
percentage of orders containing that type of error is given.
Within each category, information is provided about one or
more subcategories. For each subcategory, the number of
problem instances as well as the number of distinct prob-
lems is reported. The total problem instances percent gives
a sense of Rl’s usefulness. However, since most errors Rl now
makes are minor, its output, even if there are problems, can
usually be used, though sometimes only after a bit of editing.
The distinct problems percent in the parts and rules subto-
tal gives a sense of Rl’s competence; this measure shows the
number of distinct errors Rl has made due either to missing
or incorrect configuration knowledge or to missing or incor-
rect component descriptions. Few, we think, would want to
claim that RI was a competent configurer during its first year
of use; but for the past two years, its lack of knowledge has
been well within the bounds of respectability. The number
of problem instances divided by number of distinct problems

gives an indication of how many times a problem occurs be-
fore it is fixed.

The most significant improvement in Rl has come in
the percent of problems attributable to missing or incor-
rect rules. While missing or incorrect domain knowledge
has never been the most significant source of problems, it
is now the case that fewer than one in a thousand orders
is misconfigured because of rule problems. One might ask
(though we hope only in jest) how after four years Rl can
have any missing or incorrect domain knowledge. There are
at least two answers. First, even though Rl has configured
more than 80,000 orders, it has seen only a small fraction
of the situations it could possibly encounter. Second, new
products are sometimes announced before Rl acquires all
the knowledge it needs to be able to configure those new
products correctly.

Problems with parts have been much more troublesome.
Incorrect part descriptions have never been much of a prob-
lem, but missing part descriptions have been a significant
problem during all four years. During the first two years
Rl was used, the reason it was sometimes given systems to
configure containing components not described in its data
base had mostly to do with the fact that the people respon-
sible for adding part descriptions to the data base were not
the right people. It was assumed initially that the component
descriptions could be created by people who knew a lot about
the components, but knew little about how Rl would use the
descriptions. As it turned out, creating useful descriptions
is not all that straightforward. It often is not clear what
“configuration level” means, not clear what attributes are
required, and not clear what knowledge to put in the rules
and what in the data base. In order to know what informa-
tion a description should contain, it is necessary to know
how the information is going to be used. In order to know
how the information is going to be used, it is necessary to
know something about the component. After trying various
strategies for making the middle-men more productive, the
responsibility for creating descriptions was taken over by the
people who encode the configuration knowledge in rules.

This change would have solved the missing part descrip-
tions problem were it not that at about that time, the
number of orders Ri was configuring per quarter began
to increase substantially. As a consequence, the number
of different parts ordered grew significantly. Since Rl has
descriptions of only 5,500 of the more than 100,000 parts
that could appear on an order, and since the rate at which
the as yet undescribed parts appear on orders is very low,
the development group adopted the strategy, for low volume
parts, of waiting until the part shows up on an order before
adding its description to the data base. This policy is less
cavalier than it may seem since when one of these low volume
parts does show up on an order, it usually turns out to be
a part that is not itself configured (e.g., software or an ac-
cessory). Thus although any configuration mentioning a part
Rl does not know about is counted as a problem, most of the
time those configurations can be used without modification.

THE AI MAGAZINE Fall 1984 29

30 THE AI MAGAZINE Fall 1984

The problems not really under the control of Rl’s
developers-operational problems, controversial issues, desired
enhancements, and bogus problems-have always been a
significant part of the problems reported. During the first
year and a half, a very large fraction of the problems were
operational; a number of factors, each by itself not very
significant, conspired to separate Rl from its user com-
munity. During 1983, the number of bogus problem reports
grew to become a highly encouraging (from Rl’s point
of view) fraction of the total problem reports; from July
through September, the number of bogus problem reports
was actually double the number of rule problem instances,
and during the other three quarters the number of bogus
problem reports was about half the number of rule problem
instances.

Figure 5 presents some of the information from Figure 4
in graphical form. The relationships among “total orders”,
“total problem instances”, “total distinct problems” and
“rule problem instances” are depicted. The “total orders”
measure provides a context within which the error measures
can be understood. The “total problem instances” measure
provides a lower bound on Rl’s usefulness. The area under
that curve indicates the number of orders for which Rl’s
output was possibly not useful; however, as we have seen, in
most cases the output could be used, though sometimes only
after being modified. The “total distinct problems” measure
provides a lower bound on Rl’s competence. The area under
that curve indicates the number of different kinds of situa-
tions Rl did not deal effectively with. The “rule problem in-
stances” measure indicates the extent to which Rl’s failures
were due to its ignorance of the domain.

Conclusions about Performance

As in the previous section where some conclusions about
growth were presented, the following conclusions purport to
provide guidance to the developers of any knowledge-based
application system. Since the conclusions we offer here are
not very startling, it is quite likely that they have some
general validity. All they really contain is the notion that
when AI tools confront real tasks, the world is not going to
obediently conform to all of the hopes of the tool maker. The
real world treats AI tools with the same disrespect with which
it treats all other tools and thus a great deal of the effort of
bringing AI systems into regular use on real tasks involves
doing things that do not have any special relationship to
AI. What undoubtedly makes matters worse for AI tools is
that the problems they are used to solve are ordinarily more
open than the problems traditional software tools typically
address.

In the previous section we argued that an expert system
will never have all the knowledge it needs. Thus it will al-
ways make mistakes, and it is important for both the devel-
opers and the users to expect them. Rl’s performance data
suggest something even stronger: To expect anything close
to perfection during the first few years a system is being

NUMBER

OF RUNS

20000

18000

16000

14000

12000

4000 TOTAL

PROBLEM
INSTANCES

PROBLEMS

INSTANCES

0
12/31/80 12/31/81 12/31/82 12/31/83

Rl’s Performance by Quarter (in Graphical Form)

Figure 5.

used (especially if the task is significantly more than toy) is
probably a very serious mistake. We believe the data also
suggest that to keep an expert system from regular use un-
til its knowledge is complete would be a poor idea. It has
taken 80,000 orders to uncover some of the inadequacies in
Rl’s configuration knowledge, and the configuration task is
continually redefined as new products are introduced. These
facts suggest that even if someone had the time and energy
to try to create a near perfect system before introducing it
into production, many inadequacies would become evident

THE AI MAGAZINE Fall 1984 31

with regular use.
It would be a mistake to believe the major or even a

primary source of error in the performance of an expert sys-
tem will be due to incorrect or missing domain knowledge.
Depending on the number and type of objects the system
is intended to deal with, large amounts of effort may be
needed to collect and maintain the information about these
objects. But even if the nature of the task makes data col-
lection and maintenance relatively unproblematic, a variety
of other sources of error may spring up as the system begins
to be used. As we just mentioned, there is nothing magic
about knowledge-based systems that allows them to avoid
the problems other software systems have to face. Indeed,
the fact that they continue to be developed while they are
being used undoubtedly intensifies those problems. The rela-
tive seriousness of the various problems that confronted Rl
would surely have been better appreciated if Rl had had a
sophisticated problem reporting mechanism from the begin-
ning.

If one looks at Rl’s performance over the first two years
of its use and tries to imagine Rl being used in a situation
where it was being asked to configure thousands of orders a
month, it seems clear that its use would have been discon-
tinued. This judgment is perhaps overly harsh since, as men-
tioned above, a significant portion of the configurations with
errors could be used with only minor modifications. In any
event, using Rl in a high volume environment would have
made its initial nuturing substantially more difficult. Rl was
used instead in an environment in which the initial demands
on it were of the order of a few tens of orders per week for
the first year. This small volume made it possible for people
to jump in whenever Rl failed and to avoid depending too
much on a system that at the time was far from being an
expert in the domain.

Conclusion

One of our purposes in giving these glimpses of Rl’s de-
velopmental and performance histories is to provide some
evidence for evaluating the claims that have been made about
expert systems. Expert systems supposedly are easy to de-
velop incrementally and, at some point, become as good as
human experts. Rl lends some credence to both of these
claims. While substantial effort has been required to de-
velop Rl, the approach taken has made it possible over a
four year period to increase Rl’s knowledge substantially
without starting over; this lends support to the first claim.
The fact that human experts erroneously conclude that Rl
has misconfigured systems about as frequently as Rl actually
misconfigures systems lends some support to the second
claim.

References

Forgy, C. L. (1979) OPS user’s manual. Technical Report,
Carnegie-Mellon University, Department of Computer Science.

32 THE AI MAGAZINE Fall 1984

NEW FROM
ABLEX PUBLISHING CORP.

Artificial Intelligence Applications for Business
Walter Reitman, Ed.

1984/356 pp./$37.50
Human Factors in Computer Systems

John Thomas, IBM Research Center
Michael Schneider, Sperry-Univac

19841300 pp./$34.50
Human Factors and Interactive Computer Systems

Yannis Vassiliou, Ed.-New York University
19841320 pp./$3650

COMPUTER LITERACY
BOOKSHOP

Forgy, C. L. (1981) OPS5 user’s manual. Technical Report,
Carnegie-Mellon University, Department of Computer Science.

Gupta, A and C. L. Forgy (1983) Measurements on Produc-
tion Systems. Technical Report, Carnegie-Mellon University,
Department of Computer Science.

McDermott, J. (1980) Rl: An expert in the computer systems
domain. In Proceedings of AAAI-80, National Conference on
Artificial Intelligence, Stanford, California, 269-271

McDermott, J. (1981) Ri’s formative years. AI Magazine, Vol.
2., No. 2, 21-29.

McDermott, J. (1982) Rl: A rule-based configurer of computer
systems. Artificial Intelligence 19(l), 39-88 Also available as
a CMU, CSD technical report.

4081730.9955
(CompuServe 75176.1732)

