
Talking to UNIX in English: 
An Overview of an 

On-line UNIX Consultant 

Robert Wilensky 

Dzvzszon of Computer Sczence 
Department of Electracal Enganeerang and Computer Scaence 

Unaversaty of Calafornaa, Berkeley 
Berkeley, CA. 94720 

Abstract 

The goal of UC is to provide a natural language help facility that allows 
new users to learn operating systems conventions in a relatively painless 
way UC is not meant to be a substitute for a good operating system 
command int,erpreter, but rather, an additional tool at the disposal of 
the new user, to be used in conjunction with other operating system 
components 

UrjIXI CONSULTANT [UC] is an intelligent natural 
language interface that allows naive users to communicate 
with the UNIX operating system in ordinary English UC 
allows the user to engage in natural language dialogues with 
the operating system While there are a number of other 
natural language interfaces available today, these are mostly 
used as natural language front ends to particular data bases 
(Hayes & Carbonell 1981, Hendrix 1977, Robinson 1982, 
Waltz et al. 1976, Woods 1970). In contrast: the user 
uses UC in order to learn how better to use the UNIX 
environment in which UC is embedded UC can handle 
requests stated in a wide variety of forms, and has a number 

This research was sponsored in part by the Office of Naval Research 
under contract NOOO14.80-C-0732 and the National Science Foundation 
under grant hZCS79-06543 

IUNIX is trademark of Bell Laboratories 

of features to enhance its function as a user interface. These 
include the following: 

1. A robust language analyzer, which almost never has 
a “hard” failure and which has the ability to handle 
most elliptical constructions in context 

2 A context and memory mechanism that determines 
the focus of attention and helps with lexical and 
syntactic disambiguation, and with some aspects of 
pronominal reference. 

3 Highly extensible knowledge bases both of facts about 
UN IX and about the English language 

4. A mechanism for trying to make sense out of ill- 
formed inputs 

5 An experimental planning component that provides 
commonsense reasoning in creating plans for the 
user 

6 A goal analysis mechanism, which performs functions 
related to interpreting the user’s statements as speech 
acts. 

7. A UC Teacher, which enables UC to learn new 
vocabulary and new facts about UNIX by being in- 
structed in natural language. 

While some of the components of the system are ex- 
perimental in nature: the basic features of UC provide a us- 
able device to obtain information about UNIX. In addition, 

THE AI ,MAGAZINE Spring 1984 29 

AI Magazine Volume 5 Number 1 (1984) (© AAAI)



it is straightforward to extend UC’s knowledge base to cover 
areas of UNIX with which UC is not currently familiar. 

UC: Typing “Is -I filename” will tell what the protec- 
tion on the file named filename is (For more informa- 
tion on the Is command type “man Is “) 

UC Examples User: How can I change the write permission on my 
terminal? (or permission of or protection) 

The following examples are illustrative of the breadth 
of dialogues in which UC can participate. UC is capable 
of generating the answers shown below in response to most 
forms of the request users might supply. UC can participate 
in some dialogues that are considerably more involved than 
this one, and which will be discussed in more detail later on: 

Simple Dialogue: 

User: How do I delete a file? (or remove a file) 

UC: To change the write permission on your terminal, 

type “mesg y” to allow writing to your terminal, 
“mesg n” to disallow writing to your terminal 

User: What is a search path? 

UC: A search path in Unix is a list of directories in 
which the operating system searches for programs to 
execute 

User: What do you know about Unix? (or What can 
you tell me about Unix?) 

UC: Typing “rm filename” will remove the file with 
name filename from your current directory 

UC: I currently know about the Unix file system 

User: A directory? 

UC: Typing “rm -r directoryname” will recursively 
delete the directory with the name directoryname and 
all the files and directories contained in the directory 

User: How should one edit a file? (or change a file) 

Rationale 

The problem of naive user communication with an 
operating system provides an appealing domain for study 
and application of a number of Artificial Intelligence tech- 

UC: Typing “ex filename” will get you into the ex niques. The domain is complex enough to provide sub- 
editor, typing “emacs filename” will get you into the stantial sub-problems, but not so unbounded that a useful 
emacs editor working system must possess a hopelessly large repertoire of 

User: What is the best way to create a file? (or the 
right way or the proper way, or make a file) 

UC: The best way to create a new file is to use the 
editor, i e - “ex filename ” 

User: A directory? 

UC: Typing “mkdir directoryname” will create a direc- 
tory with name directoryname in your current direc- 
tory 

User: Do you know how to read a file? (or list a file) 

UC: Typing “pr filename” will print the file with name 
filename on your terminal 

User: How can I find out how full the disk is? 

UC: Typing “df” will tell you how full the disk is 

User: How can I find out who is on the system? (or 
on Unix or using Unix) 

knowledge. The task involves a quite realistic use of natural 
language, namely, participating in a purposive dialogue. 

In addition: UC provides an application of natural lan- 
guage processing that people would actually be willing to 
use. Some common uses for natural language processing, for 
example; natural language front ends to data bases, may not 
have this property. Simple requests to a data base manage- 
ment system may be shorter in natural language than in 
typical data base accessing formalisms (Hayes & Carbonell, 
1981). However, this is less clearly true for more complex re- 
quests. Thus it may be the case that once a user has learned 
a somewhat more cryptic query language, he is apt to prefer 
it over natural language as it is likely to provide a more 
precise and less verbose mode of expression for many of his 
queries Also, use of a natural language front end is probably 
not conducive to the learning of the underlying formalism. 

UC: Typing “who” will tell you who is on Unix 

User: How can I compare two files? 

UC: To compare two files, type “diff file1 file2 ” 

User: How can I get more help? 

UC: To get more information on Unix, try typing 
“help ” 

User: How can I sort a file? 

In contrast, a naive user of a system would probably 
be willing to converse in English with a machine, since the 
alternatives are apt to be worse. Manuals and on-line help 
facilities are only marginally useful. A user usually needs 
to be fairly sophisticated in order to issue the right help 
command, and then these are successful only a fraction of 
the time In the times that they do succeed, the information 
returned is apt to be cryptic and confusing. 

Consider, for example, the problem of finding the answer 
to the question “How can I find out if two files are the same?” 
Since the user does not know the name of the appropriate 
command, retrieving by command name is not applicable - ” 

UC: Type “sort filel” to sort the file with name file1 (This is particularly true in UNIX, where many command 
User: How can I find out who has access to my files? names would appear to be unmotivated). Retrieval by a 

30 THEY AI MAGAZINE Spring 1984 



keyword is possible using “file:” but this is likely to return too 
much information, since operating systems generally have 
many commands related to files. In the current release of 
UNIX, for example, issuing an “apropros file” command 
returns five screenfuls of command names. 

Also, there is no guarantee that the keyword with which 
the user stat’es his request is appropriate for the particular 
operating system, or happens to index the appropriate in- 
formation. For our previous example, in UNIX, retrieving 
by the keyword “same” will find no associated commands 
Nor will retrieval by the word “difference.” However, using 
the keyword “different” or “compare” returns the lists “diff 
diff3” and “cmp,” respectively. 

In such situations, navigating through a maze of infor- 
mation is undesirable, and the user would probably prefer 
simply to pose the question to a colleague. However, people 
knowledgeable enough to be helpful are not always available 
and usually do not have the time to offer. Under such cir- 
cumstances, typing in the question in English, exactly as it 
occurred to the user, becomes an attractive alternative 

In addition, the domain is %oft” in the sense that a 
system that did not work all the time is still likely to be 
useful For example, if UC failed to answer a question, the 
user is no worse off than he would be otherwise, and still has 
the normal repertoire of options at his disposal. The same is 
probably not the case if natural language is intended to be 
used as the primary means of communication. For example, 
a natural language interface to a data base that failed to 
successfully treat a user query would leave the user without 
recourse. However, UC will need to succeed a high enough 
percentage of the time, if the user is to benefit from using it. 
Failure to be helpful in any given query would be no more 
disastrous for the user than the failure of the normal help 
facilities. Both would still retain some potential value for 
the user. Thus, UC is an AI system that is useful even as it 
expands cover to a larger portion of its domain. 

Lastly, the problem integrates a number of areas of con- 
cern for artificial intelligence, including natural language 
understanding, natural language production, planning and 
problem solving 

Problems with Natural Language Interfaces 

A natural language interface must deliver a variety of 
services to the user. These involve a number of processes that 
are primarily linguistic in nature. The system must know 
enough about the primary linguistic conventions of the par- 
ticular natural language in order to interpret the meaning of 
a user’s request and to produce a reasonable natural language 
utterance of its own. A number of well known problems are 
associated with these tasks and have received a great deal of 
attention in the literature. For example, a natural language 
understander must be capable of resolving various kinds of 
ambiguities, determining the referents of pronouns and other 
noun phrases, interpreting an abbreviated utterance in the 
context of the previous dialogue, and making some sense out 

of ill-formed inputs In addition! the interface will have to be 
continually extended, both to include new vocabulary and 
new facts about the domain of discourse The constraints 
on the design of the interface imposed by the latter feature 
have been less well studied. Below we describe how these 
problems are handled in UC. 

A useful natural language interface must also incor- 
porate some processes that may be collectively referred to 
as commonsense reasoning. To demonstrate the importance 
of such extra-linguistic mechanisms, consider the following 
hypothetical dialogue with a naive interface (NI) We as- 
sume here that NI possesses knowledge about a language’s 
syntactic and semantic conventions, but is not otherwise an 
intelligent system: 

User: I’m trying to get some more disk space 

NI: Type “rm *” 

1%1’s suggestion, if executed by the user, would destroy 
all the user’s files. This rather disturbing response might be 
generated by a naive interface because the response fulfills 
the user’s literal request for more disk space However, the 
answer lacks a certain cooperative spirit. A more felicitous 
answer might be “Delete all the files you don’t need” or “Ask 
the systems manager for some more storage.” However, in 
order to prefer these responses over the above, the interface 
must be able to infer that the user possesses some goals 
other than the one stated in the request, and that these 
background goals interact with the request to constrain the 
beneficial courses of action. Specifically, the interface would 
have to have realized that users generally like to preserve 
files they have already created, and that therefore a conflict 
exists between this goal and that of obtaining more space 
by deleting files. Then a method of reasoning about this 
situation would have to be employed. 

These considerations fit more properly in the domain 
of planning and problem solving than language processing. 
However, an interface that was not designed with them in 
mind would run the risk of innocently alienating its clientele. 
In the discussion that follows, we shall discuss the application 
of an experimental planning mechanism in UC to produce 
reasonable courses of action. 

Actually, even the response shown in the previous ex- 
ample would most likely not have been generated by an in- 
terface as naive as the one we have been supposing. One fur- 
ther problem is that the user never explicitly made a request 
to the system. Rather, he simply stated something that he 
was trying to do, trusting that the interface would take it 
upon itself to offer some assistance. This is an instance of an 
indzrect speech act, another aspect of natural language inter- 
action that has received much attention (Perrault; Allen, & 
Cohen 1978). However, the class of problems that includes 
this one also includes some problems that have received less 
treatment. For example, consider answering the following 
question: 

User: How can I prevent someone from reading my 
files? 

THE AI MAGAZINE Spring 1984 31 



The direct response to this question would be to use a protec- 
tion command. However, an additional response in UNIX 
would be to use an encryption command, that is, a command 
which encodes the file so that one needs a key in order to 
decode it. The problem with offering the latter suggestion is 
that it does not literally fulfill the user’s request. Encryption 
does not prevent someone from reading a file, but merely 
from understanding it when it is read. In order to decide to 
inform the user about encryption, then, the interface must 
assume that the user misstated his request Presumably, the 
user is really interested in preventing others from learning 
the contents of his files. Having made this reinterpretation 
of the actual utterance, both methods of protection would 
be applicable. 

In the next section we discuss how these and other prob- 
lems are addressed by the design of UC. 

The Structure of UC 

UC runs on a VAX11/780 and 750 and is programmed in 
FRANZ LISP and in PEARL, an AI language developed 
at Berkeley (Deering et al., 1981). Although UC is itself a 
new system, it is built out of a number of components, some 
of which have been under development for some time. These 
components are outlined briefly in this section. 

Linguistic Knowledge 

The primary natural language processing in UC is done 
by an extended version of PHRAN (PHRasal ANalyzer) 
and PHRED (PHRasal English Diction) (Wilensky 1981b). 
PHRAN reads sentences in English and produces repre- 
sentations that denote their meanings; PHRED takes repre- 
sentations for ideas to be expressed, and produces natural 
language utterances that convey these ideas These pro- 
grams represent the very front and back ends of the inter- 
face, respectively. In addition, PHRAN and PHRED are 
relatively easily extended to process new linguistic forms and 
domains. 

For UC, PHRAN has been extended to handle some 
forms of ellipsis A component to process ill-formed con- 
structions is under development but has not yet been incor- 
porated into UC. A more significant extention to PHRAN 
is the addition of a context mechanism. This is essentially 
an activation-based memory used by UC to keep track of the 
focus of the discourse (Grosz: 1977), handle some aspects of 
reference, and help in word disambiguation 

Goal Analysis 

Once the meaning of an utterance has been extracted by 
PHRAN, it is passed to the Goal Analyzer This module 
performs a form of plan recognition on the input, so that 
indirect requests may be interpreted as such. The Goal 
Analyzer also attempts to do the sort of “request correction” 

demonstrated in the example given previously. That is, it 
not only tries to interpret the goal underlying the action, 
but it may infer that the user wanted something somewhat 
different from what was actually requested 

Plan Formation 

Responses are generated in UC by using a plan genera- 
tion mechanism called PANDORA (Faletti 1982). PAN- 
DORA takes as input the goal produced by the Goal 
Analyzer, and tries to create a plan for the user that will 
achieve this goal. In doing so: PAND 0 R A reasons in a man- 
ner that will produce commonsense results, thus preventing 
the sort of anomalies discussed previously In the majority 
of cases, PANDORA will do nothing more complex that 
look up a stored plan associated with the goal in memory 
and return this as the answer. This appears to be ade- 
quate for most simple requests. Thus even though PAN- 
DORA is an experimental system, we can run UC in a use- 
ful mode without encountering most of the complexities this 
component was designed to contend with. 

Expression Formation 

Once a plan is selected by PANDORA, it is sent to the 
expression formation component to decide which aspects of 
the response should actually be mentioned. Currently, this 
component is quite sketchy, largely because most of our effort 
has gone into request understanding rather than answer 
generation. Ultimately, the goal is to produce answers that 
do not contain facts the user is likely to know; etc Some 
of the principles involved in this mechanism are described in 
Luria (1982). 

Once the answer is formulated, it is sent to PHRED, 
which attempts to express it in English. In addition, some 
of the facts stored in the UC knowledge base are associated 
with canned pieces of text. If the answer corresponds to 
such a simple fact, this text is output rather than using the 
PHRED generator. Since the most frequently asked ques- 
tions are generally of this form, considerable time savings 
is accomplished by bypassing the more complex generation 
process. 

Representation and Knowledge Base 

Facts about UNIX, as well as other pieces of world 
knowledge, are represented declaratively in an associative 
knowledge base managed by PEARL (Package for Efficient 
Access to Representations in LISP). This is essentially 
a data base management package that supports labelled 
predicate-argument propositions and allows the implemen- 
tation of frame-like structures. Having a data base manage- 
ment package is particularly important for our goal of scaling 
up, as it allows us to add and use new facts without creating 
new code. 

32 THE AI M4GAZINE Spring 1984 



PEARL incorporates such standard features as auto- 
matic inheritance and various demon facilities. Also, PEARL 
has a flexible indexing structure which allows the user to ad- 
vise it about how to store facts to take advantage of how 
they are likely to be used. 

The theory of knowledge representation used in UC is 
beyond the scope of this report. We will give enough ex- 
amples of the representation of individual facts to suggest 
to the reader the basic elements of our scheme. However, 
we have liberally simplified the actual representations used 
in UC for expositional purposes. Further details of PEARL 
are available in Deering, Faletti, and Wilensky (1981, 1982). 

As an example, consider the following simplified version 
of the PEARL representation of the fact that using the “rm” 
command is a way to delete a file: 

(PLANFOR 
(CONCEPT 

(CAUSATION 
(ANTECEDENT (DO (ACTOR ?X))) 
(CONSEQUENT 

(STATE-CHANGE 
(ACTOR ?F/IS-FILE) 
(STATE-NAME EXIST) 
(FROM T) 

00 NIL))))) 
(IS (USE (ACTOR ?X) 

(COMMAND (NAME RM) 

(ARG W>)>> 

Briefly, PLANFOR is a predicate used to denote that fact 
that a particular action can be used to achieve a particular 
effect. This predicate takes two arguments, labeled CON- 
CEPT and IS (Labeled arguments have the same syntax as 
predicates. They can be distinguished by their position in 
the formula). The semantics of this predication is that the 
IS argument is a plan for achieving the CONCEPT argument 
The arguments are PEARL structures of the same sort. For 
example, the CONCEPT argument is a CAUSATION predi- 
cate, denoting that an action causes a state change. This 
particular state change describes a file going from an existent 
to non-existent status Items prefixed with question marks 
are variables. These can be constrained to match only cer- 
tain kinds of items by following them with a (one argument) 
predicate name. Thus ?F/IS-FILE constrains ?F to match 
something that is a file (This form is an abbreviation for 
something which can be only be represented less conveniently 
in the regular PEARL notation). 

A question such as “How can I delete a file?” is analyzed 
by PHRAN into a form similar to this: but with the IS ar- 
gument filled with a symbol indicating an unspecified value. 
UC attempts to answer this question by using this form to 
fetch from the PEARL knowledge base. Such a fetch will 
retrieve the above representation. The contents of the IS 
argument can then be used for generation. 

PHRAN 

PHRAN was originally implemented by Yigal Arens, 
and applied to the UC domain by David Chin In addi- 
tion to analyzing sentences for UC, PHRAN serves as the 
natural language front end for several story understanding 
systems under development at Berkeley, and has been tested 
on a variety of other sentence sources as well. PHRAN is 
discussed in Wilensky and Arens (1980) and will only be 
described briefly here. 

One of the primary design goals of PHRAN is that it be 
easily extended to cope with new language forms Applying 
PHRAN to the domain of requests about UNIX was there- 
fore as much a test of this design as it is a useful application, 
as most of the forms and vocabulary used by UC were new to 
PHRAN. As of this writing, the PHRAN component of UC 
understands requests covering about 35 different topics, each 
of which may be asked in many different linguistic realiza- 
tions To extend PHRAN to handle a new vocabulary item 
now requires only a few minutes of effort by someone familiar 
with PHRAN patterns, provided of course that the repre- 
sentation to be produced is understood. As the section on 
UC Teacher suggests, part of this process has already been 
automated to eliminate the need for trained personnel. 

At the center of PHRAN is a knowledge base of patter- 
concept pairs. A phrasal patterns is a description of an 
utterance that may be at many different levels of abstraction. 
For example, it may be a literal string such as “so’s your 
old man” ; it may be a pattern with some flexibility such as 
“(nationality) restaurant”, or “{person) (kick) the bucket”; 
or it may be a very general phrase such as “(person) (give) 
(person) (object)“. 

Associated with each phrasal pattern is a conceptual 
template. A conceptual template is a piece of meaning repre- 
sentation with possible references to pieces of the associated 
phrasal pattern. Each phrasal pattern-conceptual template 
association encodes one piece of knowledge about the seman- 
tics of the language. For example, associated with the 
phrasal pattern “(nationality) restaurant” is the conceptual 
template denoting a restaurant that serves (nationality) type 
food; associated with the phrasal pattern “(personl) (give) 
(person2) (object)” is the conceptual template that denotes 
a transfer of possession by (personl) of (object) to (person2) 
from (personl). The understanding process reads the input 
text and tries to find the phrasal patterns that apply to it 
As it reads more of the text it may eliminate some possible 
patterns and suggest new ones. At some point it may recog- 
nize the completion of one or more patterns in the text It 
may then have to chose among possible conflicting patterns 
Finally, the conceptual template associated with the desired 
pattern is used to generate the structure denoting the mean- 
ing of the utterance 

The version of PHRAN used in UC takes from 1.5 to 
8 seconds to analyze a sentence, with a typical sentence 
taking about 3.5 seconds of CPU time This version of 
PHRAN contains about 675 basic patterns of varying length 

THE AI MAGAZINE Spring 1984 33 



and abstraction. About 450 of these patterns are individual 
words Of these, about 60 are verbs. PHRAN knows both 
the roots of these verbs, as well as all the morphological 
variations in which each verb may be found. Of the 220 
patterns containing more than one word, about 90 indicate 
the way a particular verb is used. This latter group of 
patterns can be used by the program, when the need arises: 
to generate approximately 800 additional patterns. 

Ellipsis 

For UC, PHRAN has been extended by Lisa Rau to 
include an ellipsis mechanism. This mechanism handles both 
intra-sentential forms, such as “I want to delete the small 
file and the large,” and inter-sentence forms, as in “How do 
I delete a file? A directory?” 

Ellipsis is handled by first letting the basic P HRAN 
analysis mechanism produce what it can from the input. 
This process leaves a history of the patterns used to arrive 
at that understanding If the result of this process is incom- 
plete (e. g., generally something that is not a sentence where 
a sentence is expected), then previously used PHRAN pat- 
terns are examined to see if they match the patterns used 
to understand the fragment If so: then the words of the 
fragment are substituted for the words of the previous sen- 
tence that correspond to the common pattern. The resulting 
linguistic unit is then re-analyzed by PHRAN. 

determining focus of a task oriented dialog and using it to 
resolve references (Grosz, 1980). However, Grosz’s system 
relies heavily on the inherent temporal structuring of the 
task, whereas we are trying to develop an approach that is 
independent of the type of subject matter discussed. 

The following UC example illustrates the systemis ability 
to shift focus freely according to the user’s input, including 
the ability to store and recall previous contexts into focus: 

1. User: How do I print a file on the line printer? 

2. UC: To print a file on the line printer type ‘Ipr 
filename’ 

(zntervening commands and questions) 

3. User: Has the file foo been printed yet? 

4. UC: The file foo is in the line printer queue 

5. User: How can I cancel it? 

6. UC: To remove files from the line printer queue, 
type ‘Iprm username’ 

In order to reply to the last question, UC must find the 
referent of “it”. The language used implies that this must 
be a command, but the command in question was issued 
some time ago Since then, intervening commands have been 
issued, so that the chronologically more recent command is 
not the proper referent. The system is able to determine 
the correct referent because the context of 1 and 2 had been 
stored previously, and recalled upon encountering 3. 

The Context Mechanism 
Structure and Manipulation of the Context Model 

PHRAN’s knowledge is more or less confined to the sen- 
tence level Thus PHRAN by itself is unable to deal with 
reference, and cannot disambiguate unless the linguistic pat- 
terns used require a particular semantic interpretation of 
the words. In addition, the same utterance may be inter- 
preted differently in different contexts, and the mechanism 
described so far has no facility for accomplishing this. 

To fulfill the need for processing on the discourse level: 
we have constructed a single mechanism which addresses 
many of these problems, called the Context Model. 

The Context Model contains a record of knowledge 
relevant to the interpretation of the discourse, with as- 
sociated levels of activation The Model is manipulated by 
a set of rules that govern how elements introduced into the 
Context Model are to influence it and the system’s behavior. 

PHRAN and the Context Model interact continually. 
PHRAN passes its limited interpretation of the input to the 
Context Model, and it in turn determines the focus of the 
conversation and uses it to resolve the meaning of ambiguous 
terms, of references, etc , and passes these back to PHRAN 

The Context Model groups related entries and arrives 
at a notion of the situation being discussed Alternative 
situations in which a concept may appear can be ignored, 
thus enabling the system to direct the spreading of activa- 
tion. The Context Model is similar to Grosz’s scheme for 

The Context, Model is in a constant state of flux. Entries 
representing the state of the conversation and the sys- 
tem’s related knowledge and intentions are continually being 
added, deleted, or are having their activation levels modified. 
As a result the same utterance may be interpreted in a 
different manner at. different times. Following are short 
descriptions of the different elements of the system 

Entries. The Context Model consists of a collection of 
entries with associated levels of activation. These entries rep- 
resent the system’s interpretation of the ongoing conversa- 
tion and its knowledge of related information. The activation 
level is an indication of the prominence of the information in 
the current conversational context: so that when interested 
in an entry of a certain type the system will prefer a more 
highly activated one among all those that are appropriate 

There are various types of entries: and these are grouped 
into three general categories: 

1 Assertions - statements of facts known to the system. 
2 Objects - objects or events which the system has en- 

countered and that may be referred to in the future 

3. Intentions - entries representing information the sys- 
tem intends to transmit to the user (i e output) or 
other components of an understanding system (e.g 

34 THE AI MAGAZINE Spring 1984 



goal tracker, planner), and entries representing in- 
formation the system intends to determine from its 
knowledge base. 

Clusters. The entries in the Context Model are grouped 
into clusters representing situations, or associated pieces of 
knowledge. If any one member of a cluster is reenforced it 
will cause the rest of the members of the cluster to be reen- 
forced too. In this manner inputs concerning a certain situa- 
tion will continue reenforcing the same cluster of entries- 
those corresponding to that particular situation. Thus, the 
system arrives at a notion of the topic of the conversation 
which it uses to choose the appropriate interpretation of fur- 
ther inputs. 

Reenforcement. When the parse of a new input is 
received from PHRAN the system inserts an appropriate 
entry into the Context Model. If there already exists an entry 
matching the one the system is adding then the activation 
levels of all entries in its cluster(s) are increased. The level 
of activation decays over time without reenforcement, and 
when it falls below a given threshold the item is removed. 

Stored Clusters. Upon inserting a new item in the Con- 
text Model the system retrieves from a database of clusters 
all those that are indexed by the new item. Unification 
is done during retrieval and the entries in the additional 
clusters are also inserted into the Model, following the same 
procedure described here except that they are given a lesser 
activation. We thus both avoid loops and accommodate the 
intuition that the more intermediate steps are needed to as- 
sociate one piece of knowledge with another the less the men- 
tion of one will remind the system of the other. 

The system begins its operation with a given indexed 
database of clusters, but clusters representing various stages 
of the conversation are continually added. In principle, this 
should be performed automatically when the system is cued 
by the conversation as to the shifting of topic, but currently 
the system user must instruct it do so. Upon receiving such 
an instruction, then, all but the least activated entries in the 
Context Model are stored as a cluster indexed by the most 
highly activated among them. This enables the system to 
recall a situation later when presented with a related input. 

Operations on Entries in the Context Model. After 
a new entry is made in the Context Model the process 
described above takes place and eventually the activation 
levels stabilize, with some of the items being deleted, per- 
haps. Then the system looks over each of the remaining 
entries and, if it is activated highly enough, performs the 
operation appropriate for its type. The allowed operations 
consist of the following: 

1 Deleting an entry 
2 Adding another entry. 

3 Transmitting a message to another component of the 
system (i e output to the user or data to another 
program, e g PANDORA (Faletti, 1982): for more 
processing) 

4 As part of the UC system, getting information from 

the UNIX system directly (and inserting an entry 
corresponding to the result) 

Example 

In the above-mentioned US example, particularly, “User: 
How do I print a file on the line printer?“: the user asks a 
simple question. PHR AN analyzes the question and sends 
the Context Model a stream of entries to be inserted. Among 
them are the fact that the user asked for a plan for printinga 
file on the line printer. The system records these facts in 
the Context Model. Indexed under the entry representing 
the user’s desire to obtain a goal there is a cluster contain- 
ing entries representing the system’s intent to find a plan 
for the goal the user has and instructing the system to tell 
the user of this plan. This cluster is instantiated here with 
the goal being the particular goal expressed in the question. 
The entry expressing the system’s need for a plan for the 
user’s goal leads to the plan in question being introduced 
also. This happens because the system happens to already 
have this association stored. When the system looks over 
the entries in the Context Model and comes to the one con- 
cerning the need to find the plan in question it will check 
to see if an entry for such a plan already exists, and in our 
case it does. But if no plan were found, the system would 
insert a new entry into the Context representing its intent to 
pass the information about the user’s request to the planner! 
PANDORA (Faletti, 1982). PANDORA will in turn return 
the plan to be inserted in the Context Model. 

When the system finds the plan (issuing the command 
above) and inserts a new entry instructing the system to 
output it to the user This ultimately results in generating 
n 
L. 

The topic shifts and the previous context is stored, in- 
dexed by the most highly activated entries, including the file 
name, the mention of the line printer, the event of printing 
the file, and the command issued. 

When 3. is asked, this cluster is loaded again into the 
Context Model. To determine the referent of “it” in 5., 
the Context Model is examined for highly activated ent’ries. 
Since the command to print the file would have just have 
been brought back into the Model, it will be more highly 
activated that other, more recent request. 

Shortcomings 

The system is not currently able to determine on its own 
that the topic has changed and that it must store the current 
context. When it is instructed to, the current system stores 
essentially a copy of the more highly activated elements of the 
Context Model when creating a new cluster. They are not 
assumed to have any particular structure or relations among 
them other than all being highly activated at the same time 
This causes two problems: 

THE AI MAGAZINE Spring 1984 35 



1. As a result it is very difficult to generalize over such 
clusters (cf Lebowitz, 1980). The system may at 
some point determine a plan for changing the owner- 
ship of a particular file, and store a cluster containing 
it. If it is faced with the need to change the owner- 
ship of another file, however, the system will not be 
able to use this information. 

2 There is no way to compare two clusters and deter- 
mine that in fact they are similar Thus we may have 
many clusters indexed by a certain entry all of which 
actually describe essentially the same situation 

Goal Analysis 

Goal analysis is the process of inferring a user’s plausible 
goal from an input statement or request. The UC Goal 
Analyzer, implemented by James Mayfield, works by at- 
tempting to apply to the input a set of rules designed ex- 
plicitly for this purpose. Each rule consists of an input and 
an output conceptualization. Should a rule match an input, 
the associated output conceptualization is inferred. This 
process is iterated on the inferred conceptualization until no 
more rules are found to apply. The final product of this 
process is assumed to be the user’s intention 

For example, consider the following indirect request and 
UC response: 

User: I want to delete a file 

UC: Typing “rm filename” will remove the file with 
name filename from your current directory 

This response is generated as follows. The Goal Analyzer 
has a rule that states that the assertion of a goal means that 
the user does not know how to achieve t’hat goal. This rule 
is represented in this form: 

(GOAL-ANALYSIS-RULE 

[IN-CONCEPT (GOAL (PLANNER ?PERS) 

(OBJECTIVE ?OBJ))] 
[OUT-CONCEPT 

(NOT 

(STATE 

(KNOW 
(ACTOR ?PERS) 

(FACT 

(CAUSATION(ANTECEDENT *urwsP~c*) 
(CONSEQUENT ?OBJ))))))]) 

The application of this rule to the input produces a 
conceptualization denoting that the user does not know how 
to delete a file. Iterating the process, the Goal Analyzer finds 
a rule applicable to this inference, namely, that an assertion 
of not knowing how to do something means that the user 
wants to know how to do that thing. This is represented as: 

(GOAL-ANALYSIS-RULE 
[IN-CONCEPT 

(NOT 
(STATE 

(KNOW (ACTOR ?PERS) 
(FACT (CAUSATION 

(ANTECEDENT *UNSPEC*) 

(CONSEQUENT ?OBJ))))))] 

[OUT-CONCEPT 

(GOAL 
(PLANNER ?PERS) 

(OBJECTIVE 

(KNOW (ACTOR ?PERS) 
(FACT (CAUSATION 

(ANTECEDENT *UNSPEC*) 

(CONSEQUENT ?OBJ))))))]) 

Applied to the inference just produced, this rule in- 
structs UC that user wants to know how to delete a file. 
In the next interation, the Goal Analyzer finds no rule ap- 
plicable to its latest conclusion, and passes this conclusion 
along to UC as the user’s intention. It is then straightfor- 
ward for UC to produce the response shown above. 

The Goal Analyzer has several other rules of this sort. 
One set of such rules tries to “correct” a user’s misstatement 
of his goal. This is done by checking to see if a stated (or 
inferred) goal is an instance of a known normal goal. For 
example, UC contains the facts that not wanting others to 
learn the contents of one’s files is normal; and that reading is 
a way of coming to know something Thus a user’s statement 
that he is trying to prevent someone from reading his files 
will be interpreted to mean that he is trying to prevent them 
from coming to know the content of his files. This enables 
UC to give a broader class of answers, as indicated in the 
beginning of this report. 

The current UC Goal Analyzer has two potential draw- 
backs: 

1 There are probably some inputs that require more 
elaborate plan-goal analysis. For example, the state- 
ment of a goal that is normally instrumental to some 
other goal may entail inferring that goal This situa- 
tions might require the sort of plan analysis that 
we have postulated in story understanding (Wilensky 
1982). However, in practice, such cases seem not to 
arise in the UC task environment 

2 The Goal Analyzer is not sensitive to context nor 
does it incorporate a model of the user For example, 
if a sophisticated user says that he wants to delete 
the file “foe”, UC should not interpret this as a 
request for information about how to delete a file in 
general Rather, it is more likely that there is some 
problem with this particular file This has not arisen 
as a problem in our application where we make some 
relatively simplistic assumptions about the user 

36 THE AI MAGAZINE Spring 1984 



Extending UC to Process More Complex Requests 

Most requests require more complex processing, however. 
For these situations, UC uses a reasoning component based 
on the PANDORA planning mechanism (Wilensky, 1981a). 
PANDORA, implemented by Joe Faletti, is based on a 
model of planning in which goal detection and goal inter- 
actions play a prominent role. For example, consider the 
previous example of the indirect request: I need some more 
disk space A literal response to this remark might be Type 

” rm *” , which is most likely not what the user had in mind. 
The problem with this response, of course, is that it 

violates an unstated user goal, namely, that the user wants to 
preserve what he has already put on the disk. An intelligent 
consult must be able to infer such goals, and reason about 
the interactions of such goals with those explicit in the user’s 
request In this example, an implicit goal (preserving a file) 
may conflict with the stated goal (getting some more space), 
and this possibility must be explored and dealt with. 

Although originally constructed to be an autonomous 
planner, PANDORA’s architecture is well suited for this 
sort of reasoning. PANDORA first tries to apply a stored 
plan to a given goal. It then simulates the situation that may 
result from the current state of the world using a mechanism 
called a ProJector. In the above example, the simulation will 
reveal, among other things, that some files will get destroyed, 
as this is a consequence of the “rm” command. 

Another of PANDORA’s basic components is called the 
Goal Detector. This mechanism determines the goals the 
planner should have in a given situation. The goal detector 
is essentially a collection of demons that respond to changes 
in the environment, including the simulated environment 
created by the projector. In this example, when the simu- 
lated future reveals the possible destruction of a file, the goal 
detector will react to this possibility by inferring the goal of 
preserving this file. 

Since this preservation goal arises from a plan of the 
user’s, PANDORA also infers that there may be a goal 
conflict between this goal and the goal underlying the user’s 
original request. PAND 0 RA makes this inference by con- 
sidering a goal giving rise to a preservation goal as another 
situation in which to detect a goal (namely, the goal of resolv- 
ing the goal conflict). Then a plan for this “resolve-goal- 
conflict” goal can be sought by successive application of the 
whole planning process. 

This algorithm makes use of a meta-plannzng repre- 
sentation for planning strategies. The goal of resolving a goal 
conflict is actually a meta-goal, that is, a goal whose success- 
ful execution will result in a better plan for other goals. This 
formulation allows the goal detection mechanism to be used 
to solve the problem of goal conflict detection, and the nor- 
mal planning process to find a resolution to such a problem. 
More detail on meta-planning and the associated algorithms 
is given in Wilensky (1981a) 

In the example at hand, the presence of a goal conflict 
is only a possibility, as the user may well have some files 

that he doesn’t need. A general strategy in such situations 
is to determine whether the possibility actually exists. This 
would lead to the generation of question Do you have any 
files that you do not need? If the user’s response is negative, 
then the conflict does in fact exist, and a conflict resolution 
strategy must be employed. 

A strategy that is applicable to all conflicts based on a 
shortage of resources is to try obtaining more of the scarce 
resource. In the example above, the scarce resource is disk 
space. PANDORA would then create a new goal of obtain- 
ing more disk space. Since a stored plan for this goal is to 
ask the systems manager for more room, UC can respond 
with the advise that the user request more room from the 
systems manager. An implementation of PANDORA and a 
fuller explanation of its role in UC is found in Faletti (1982). 

Of course, it is possible to store requesting more room 
as a plan for the original goal, and by-pass all this complex 
reasoning. The problem with such a solution is that it would 
preclude the possibility of informing the user that he could 
delete a file that he doesn’t need Alternatively, we could 
make a more complex canned plan that checks for just this 
situation. That is, the stored plan would be to delete a file 
one doesn’t want, and, if this fails, then to request more 
space. The problem here is that it would be necessary to 
include all possible interactions in the canned plan. While 
it may be desirable to include some of these some of the 
time, to deal with unanticipated interactions, a more general 
reasoning mechanism is required For example, if the systems 
manager is unavailable and the user’s desire for the disk 
space is great enough, deleting a file may still be a reasonable 
solution; however, it is unlikely that such a possibility would 
be anticipated by the canned plan. 

UC Teacher 

One of the primary design goals of the various com- 
ponents of our system is that it be a relatively straightfor- 
ward task to extend them. Our basic approach is similar to 
that used in expert system and other areas of AI. This is 
to formulate knowledge in a declarative data base of some 
sort so that the straightforward addition of facts may be ac- 
comodated without reprogramming 

The use of highly declarative representations has enabled 
us to provide another sort of extensibility for UC. This is the 
power to extend the system by telling it in English addition 
facts about the language and about the UNIX domain UC 
can be extended using natural language through the use of 
an accompanying UC Teacher component, developed by Jim 
Martin. For example; consider the following dialogue, in 
which a version of UC does not previously know about the 
words ‘delete’ and ‘remove’, or about how to accomplish 
these actions in UNIX: 

User: To delete something means to cause it to not 
exist 

UCT: Entering “delete” into PHRAN patterns 

THE AI MAGAZINE Spring 1984 37 



User: You can delete a file by typing rm filename 

UCT: Adding new cluster to UC memory 

User: To remove a file means to delete it. 

UCT: Entering “remove” into PHRAN patterns. 

User: How do I remove a file? 

UCT: Typing ‘rm filename’ will delete the file with 
name filename 

User: How do I delete a file? 

UCT: Typing ‘rm filename’ will delete the file with 
name filename 

UC Teacher uses definitional information, such as that 
contained in the first sentence, to create new PHRAN 
pattern-concept pairs. To do so, UC Teacher requires some 
PHRAN patterns that help it analyze sentences containing 
words like means, since such sentences are likely to also con- 
tain words that have no previous PHRAN definitions. In ad- 
dition, UC Teacher needs to makes some assumptions about 
the linguistic properties of new items. For example, the 
PHRAN pattern-concept pair created from the first sentence 
above is as follows: 

([(PERSON)(ROOT DELETE)(THING)] 

[P-O-S ‘SENTENCE 
CD-FORM 

‘(CAUSATION 
(ANTECEDENT 

(DO (ACTOR ?ACTOR))) 
(CONSEQUENT 
(S TATE-CHANGE 

(ACTOR ?OBJECT) 
(STATE-NAME PHYSICAL-STATE) 
(FROM 10) 

(TO -lo>>>> 

ACTOR (VALUE i CD-FORM) 
OBJECT (VALUE 3 CD-FORM)]) 

To built this pattern, UC Teacher makes the assumption 
that the verb will take a person as a subject and that this 
person will be the cause or actor of the concept produced. 
The concept part is taken directly from pattern PHRAN 
used to understand the definiens portion of the original sen- 
tence. The resulting pattern can now be used in conjunction 
with the rest of PHRAN to parse sentences involving the 
word DELETE. 

PHRAN interprets the second sentence as a statement 
of a plan. UC Teacher uses a P HRAN definition of verbs 
like typing that enables them be followed by a literal string. 
UC Teacher assumes certain conventions for this string. For 
example, it assumes that a word in it that it cannot parse 
is the name of a UNIX command, and that the particular 
word filename refers to a generic file. UC Teacher can now 

assert the output of this analysis, which is a quite ordinary 
looking fact, into the PEARL data base that contains the 
rest of the system’s knowledge. 

The third sentence, which establishes remove as a syno- 
nym for delete, is treated similarly to the first sentence. 

When the questions in the last two sentences of the ex- 
ample are subsequently asked, UC will be able to analyze 
them into the appropriate conceptual content using the 
PHRAN patterns just created. Then the system will be able 
to retrieve the fact stored in the PEARL knowledge base for 
use in answering the question. 

Currently, the example shown is as complex a situations 
as UC Teacher can handle. In particular, no mechanism 
exists for creating patterns with optional parts with more 
complex syntactic features. Nor is the indexing of either 
new pattern-concept pairs or facts about UNIX done in an 
intelligent manner. 

Problems with UC 

In addition the limitations associated with the various 
UC components that have been discussed above, there are 
a number of more general difficulties. Probably the most 
significant problem in UC involves representational issues. 
That is, how can the various entities, actions and relation- 
ships that constitute the UC domain best be denoted in a 
formal language? Of course this problem is central to AI 
in general, and UC's domain is rich enough for all the tradi- 
tional problems to apply. 

The representation used in UC has continually changed 
as the system has matured. A rather stable body of central 
concepts has emerged in this process, although a discussion 
of these ideas and a comparison to other systems of repre- 
sentation is beyond the scope of this paper. 

A pragmatic problem with UC is efficiency. Currently, 
it takes about a minute of real time on a VAX to respond 
to a request, most of which seems to be spent in the con- 
text mechanism. As this is one of the more experimental 
components of the systems, we feel that there is a great deal 
of room for improvement. The context mechanism is needed 
only for more complex requests, thus there may be some way 
of avoiding the overhead inherent in its operation when it is 
not essential. In addition, some UC components, such as 
PHRAN, run considerably faster on the DEClO than they 
do the VAX, after machine power is factored out. This may 
mean that there is room for improvement on the implemen- 
tation level. 

Lastly, we have not yet road tested UC with real users. 
Primarily, this is because we feel that the UC knowledge base 
is not yet large enough to guarantee a high enough hit ratio 
to sustain its use. We are confident that requisite exten- 
tion of the knowledge base will be relatively straightforward. 
However, we feel less sure that the the kinds of questions we 
have designed UC to answer will be the ones users will find 
it useful to ask. We intend to collect as data the questions 

38 THE AI MAGAZINE Spring 1984 



UC is unable to answer in its initial test runs in order to 
determine subsequent modifications of the system. 

References 

Arens, Y. (1981) Using Language and Context in the Analysis 
of Text In Proceedings of the Seventh International Joint Con- 
ference on Artificial Intelligence. Vancouver, B. C , August 

Arens, Y (1982) The Context Model: Language Understanding. 
In Proceedings of the Fourth Annual Conference of the Cognitive 
Science Society. Ann Arbor, Michigan, August 

Brachman, R., Bobrow, R., Cohen, P Klovstad, J., Webber, B 
L., & Woods, W. A. (1979) Research in natural language under- 
standing. Technical Report 4274, Bolt, Beranek and Newman 
Inc. 

Burton, Richard R (1976) Semantic Grammar: An Engineer- 
ing Technzque for Constructing Natural Language Understanding 
Systems. BBN Report No 3453, December 

Deering, M , Faletti, J , & Wilensky, R. (1981) PEARL: An 
Efficient Language for Artificial Intelligence Programming. In 
Proceedzngs of the Seventh International Joint Conference on 
Artificial Intelligence. Vancouver, British Columbia, August. 

Deering, M., Faletti, J , & Wilensky, R. (1982) The PEARL Users 
Manual. Berkeley Electronic Research Laboratory Memo- 
randum No. UCB/ERL/M82/19, March. 

Faletti, J (1982) PANDORA - A Program for Doing Common- 
sense Planning in Complex Situations In Proceedzngs of the 
Second Annual National Artificial Intellagence Conference. Pit- 
tsburgh, PA, August 

Grosz, B J (1977) The Representation and Use of Focus in 
a System for Understanding Dialogs. In Proceedzngs of the 
Fifth International Joznt Conference on Artzficial Intelligence. 
Carnegie-Mellon University, Pittsburgh, PA 

Hayes, J. H., & Carbonell, J G (1981) Multi-Strategy Construc- 
tion-specific Parsing for Flexible Data Base Query and Update. 
In Proceedings of the Seventh International Joint Conference on 
Artzficial Intelligence. Vancouver, British Columbia, August. 

Held, G D., Stonebraker, M. R , & Wong, E. (1975) INGRES - 
A relational data base system. AFIPS Conference Proceedings, 
44, NCC 

Hendrix, Gary G. (1977) The Lzfer Manual: A Guide to Buildzng 
Practical Natural Language Interfaces. SRI International: AI 
Center Technical Note 138. 

Lebowitz, M (1980) Generalizatzon and Memory in an Integrated 
Understanding System. Yale University Department of Com- 
puter Science Technical Report 186. 

Riesbeck, C K. (1975) Conceptual analysis. In R C. Schank 
(Ed.) Conceptual Information Processing New York, NY: 
American Elsevier Publishing Company, Inc 

Robinson, J. J (1982) DIAGRAM: A Grammar for Dialogues. 
Comm. ACM Volume 25, pp. 27-47. 

Schank, R C , Lebowitz, M. & Birnbaum, L. (1980) An Integrated 
Understander In American Journal of Computational Linguzs- 
tzcs 6 (1)) January-March 

Waltz, D. L , Finin, T , Green, F , Conrad, F., Goodman, B , 
& Hadden, G. (1976) The PLANES system: natural language 
access to a large data base Coordinated Science Lab., University 
of Illinois, Urbana, Tech. Report T-34. 

Wilensky, R. (1982) Planning and Understanding. Addison. 
Wesley. Reading, Mass 

Wilensky, R & Morgan, M. (1981) One Analyzer for Three 
Languages Berkeley Electronic Research Laboratory Memo 
randum No. UCB/ERL/M81/67 September. 

Woods, W. A. (1970) Transition Network Grammars for Natura 
Language Analysis. Comm. ACM, 13, 591-606. 

Wilensky, R. (1981a) Meta-planning: Representing and using 
knowledge about planning in problem solving and natural lan. 
guage understanding. Cognitive Sczence 5 (3). 

Wilensky, R. (1981b) A Knowledge-based Approach to Natura 
Language Processing: A Progress Report IJCAI 7, Vancouver 
British Columbia, August. 

Frontier technologies creating tomorrow 

Computer Aided Molecular Design using 
Artificial Intelligence Techniques 

We are a Silicon Valley company developing 
computer-aided molecular design tools for the 
pharmaceutical and biochemical industries, 
These tools will also be applied to innovative in- 
house biotechnology activities. We are looking 
for a range of experienced Al computer scientists 
to expand this R & D effort 

The computational environment is based on 
state-of-the-art workstation technology for LISP 
and graphics processing. 

Contact: David Mishelevich, M.D., Ph.D. 
Vice President 

325 E. Middlefield Road 
Mountain View, California 94043 

(4151969-2500 

THE AI MAGAZINE Spring 1984 31 




