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Abstract 

Our group’s work in medical decision making has led us to formulate 
a framework for expert system design, in particular about how the 
domain knowledge may be decomposed into substructures We propose 
that there exist different problem-solving types, i e , uses of knowledge, 
and corresponding to each is a separate substructure specializing in 
that1 type of problem-solving Each substructure is in turn further 
decomposed into a hierarchy of specialists which differ from each other 
not in the type of problem-solving, but in the conceptual content of 
their knowledge; e g , one of them may specialize in “heart disease,” 
while another may do so in “liver,” though both of them are doing the 
same type of problem-solving Thus ultimately all the knowledge in the 
system is distributed among problem-solvers which know how to use 
that knowledge This is in contrast to the currently dominant expert 
system paradigm which proposes a common knowledge base accessed 
by knowledge-free problem-solvers of various kinds In our framework 
there is no distinction between knowledge bases and problem-solvers: 
each knowledge source is a problem-solver We have so far had occa- 
sion to deal with three generic problem-solving types in expert clinical 
reasoning: diagnosis (classification), data retrieval and organization, 
and reasoning about consequences of actions In a novice, these expert 
structures are often incomplete, and other knowledge structures and 
learning processes are needed to construct and complete them 

Introduction 

For the past few years our research group has been in- 
vestigating the issues of problem-solving as well as knowledge 
organization and representation in medical decision making. 
In parallel with this investigation we have also been build- 
ing and extending a cluster of systems for various aspects 
of medical reasoning. The major system in this cluster is 
MDX, which is a diagnostic system, i.e., its role is to ar- 
rive at a classification of a given case into a node of a diag- 
nostic hierarchy. The theoretical basis of this diagnostic 
problem-solving is laid out in some detail in Gomez and 
Chandrasekaran. 

The MDX system, which is wholly diagnostic in its 
knowledge, communicates with two auxiliary systems, 
PATREC and RADEX. PATREC is a data base assistant 
in the sense it acquires the patient data, organizes them, 
and answers the queries of MDX concerning the patient 
data. In all these activities PATREC uses various types of 
inferential knowledge embedded in an underlying concep- 
tual model of the domain of medical data. RADEX is a 
radiology consultant to MDX, and it suggests or confirms 
diagnostic possibilities by reasoning based on its knowledge 
of imaging procedures and relevant anatomy. See Mittal 
and Chandrasekaran (Mittal, Chandrasekaran, 1981) and 
Chandrasekaran et al (Chandrasekaran, Mittal and Smith, 
1980) for further details about these subsystems. 

This is a revised and extended version of an invited talk entitled, 
“Decomposition of Domain Knowledge Into Knowledge Sources: The 
MDX Approach,” delivered at the IV National Conference of the 
Canadian Society for Computational Studies of Intelligence, May 17-19, 
1982, Saskatchewan 
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Though in a sense RADEX and PATREC can both be 
viewed as “intelligent” data base specialists, RADEX has 
some additional features of interest due to the perceptual 
nature of some of its knowledge. However, for the purpose 
of this paper, it is not necessary to go into RADEX in much 
detail, and we can view PATREC as prototypical of this class 
of auxiliary systems. 

Our aim in this paper is to outline a point of view about 
how a domain gets naturally decomposed into substructures 
each of which specializes in one type of problem-solving. 
Each of these substructures in turn further gets decomposed 
into small knowledge sources of the same problem-solving 
type, but specializing in different concepts in the domain. 
We shall see that this sort of decomposition results in more 
natural control and focus properties of the overall system. 
Identification of these substructures and how they communi- 
cate with one another is vital to the proper organization of 
the body of knowledge for problem-solving in that domain. 

Our method in this paper will be to examine how 
knowledge is used in a few well-defined tasks: diagnosis, data 
storage and retrieval, and reasoning about consequences of 
actions. It should be emphasized that these tasks are not par- 
ticular to the medical domain. Rather they are fundamental 
generic tasks occurring in a wide variety of problem-solving 
situations. Thus these tasks are elements of a taxonomy of 
basic problem-solving types. When we are done with this 
examination, the general principles of knowledge decomposi- 
tion will begin to take on some clarity. 

One final point: we will use examples from both medical 
and non-medical domains. In particular, there are many 
similarities between reasoning about diseases and therapies 
on one hand and trouble-shooting and synthesis of corrective 
actions in complex engineering systems on the other. 

The Diagnostic Task 

By the term “diagnostic task,” we mean something very 
specific: the identification of a case description with a specific 
node in a pre-determined diagnostic hierarchy. For the pur- 
pose of current discussion let us assume that all the data 
that can be obtained are already there, i.e., the additional 
problem of launching exploratory procedures such as order- 
ing new tests etc. does not exist The following brief account 
is a summary of the more detailed account given in (Gomez, 
Chandrasekaran, 1981) of diagnostic problem-solving. 

Let us imagine that corresponding to each node of 
the classification hierarchy alluded to earlier we identify 
a “concept.” The total diagnostic knowledge is then dis- 
tributed through the conceptual nodes of the hierarchy in a 
specific manner to be discussed shortly. The problem-solving 
for this task will be performed top down, i.e., the top-most 
concept will first get control of the case, then control will 
pass to an appropriate successor concept, and so on. In the 
medical example, a fragment of such a hierarchy might be 
as shown in Fig. 1 

Internist 

LivV Hem t 

Hepatitis Jaundice 

Figure I 

More general classificatory concepts are higher in the 
structure, while more particular ones are lower in the hierar- 
chy. It is as if INTERNIST first establishes that there is in 
fact a disease, then LIVER establishes that the case at hand 
is a liver disease, while say HEART etc. reject the case as 
being not in their domain. After this level, JAUNDICE may 
establish itself and so on. 

Each of the concepts in the classification hierarchy has 
“how-to” knowledge in it in the form of a collection of diag- 
nostic rules These rules are of the form: <symptoms> -+ 
<concept in hierarchy>, e.g., “If high SGOT, add n units 
of evidence in favor of cholestasis.” Because of the fact that 
when a concept rules itself out from relevance to a case, all its 
successors also get ruled out, large portions of the diagnostic 
knowledge structure never get exercised. On the other hand, 
when a concept is properly invoked, a small, highly relevant 
set of rules comes into play. 

The problem-solving that goes on in such a structure is 
distributed. The problem-solving regime that is implicit in 
the structure can be characterized as an ‘establish-rejine” 
type. That is, each concept first tries to establish or reject 
itself. If it succeeds in establishing itself, the refinement 
process consists of seeing which of its successors can es- 
tablish itself. Each concept has several clusters of rules: 
confirmatory rules, exclusionary rules, and perhaps some 
recommendation rules. The evidence for confirmation and 
exclusion can be suitably weighted and combined to arrive 
at a conclusion to establish, reject or suspend it. The last 
mentioned situation may arise if there is not sufficient data 
to make a decision. Recommendation rules are further op- 
timization devices to reduce the work of the subconcepts. 
Further discussion of this type of rules is not necessary for 
our current purpose. 

The concepts in the hierarchy are clearly not a static 
collection of knowledge. They are active in problem-solving. 
They also have knowledge only about establishing or reject- 
ing the relevance of that conceptual entity. Thus they may be 
termed “specialists,” in particular, “diagnostic specialists ” 
The entire collection of specialists engages in distributed 
problem-solving. 

The above account of diagnostic problem-solving is quite 
incomplete. We have not indicated how multiple diseases 
can be handled within the framework above, in particular 
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when a patient has a disease secondary to another disease. 
Comez has developed a theory of diagnostic problem-solving 
which enables the specialists in the diagnostic hierarchy to 
communicate the results of their analysis to each other by 
means of a blaclcboard (Erman, Lesser, 1975), and how the 
problem-solving by different specialists can be coordinated. 
See (Gomez, Chandrasekaran, 1981) for details. Similarly, 
how the specialists combine the uncertainties of medical data 
and diagnostic knowledge to arrive at a relatively robust 
conclusion about establishing or rejecting a concept is an 
important issue, for a discussion of which we refer the reader 
to (Chandrasekaran, Mittal and Smith, 1982). 

The points to notice here are the following. The control 
transfer from specialist to specialist is akin to the correspond- 
ing situation in the medical community. We shall have more 
to say about this later on. Especially note that there is no 
“problem-solver” standing outside, uszng a knowledge base. 
The hierarchy of diagnostic specialists is the problem-solver 
as well as the knowledge-base, albeit of a limited type and 
scope. That is, the particular kind of problem-solving is em- 
bedded in each of the units in the knowledge structure. 

Data Retrieval and Inference 

Consider the following situation that might arise in diag- 
nostic problem-solving that was discussed earlier. Suppose 
a rule in the liver specialist was: “If history of anesthetic 
exposure, consider hepatitis ” This is a legitimate diagnostic 
rule in the sense described earlier, i.e., it relates a manifes- 
tation to a conceptual specialist. However, suppose there 
is no mention of anesthetics in the patient record, but his 
history indicates recent major surgery. We would expect a 
competent physician to infer possible exposure to anesthetics 
in this case and proceed to consider hepatitis. Similarly, 
if a diagnostic rule has “abdominal surgery” as the datum 
needed to fire it, but the patient record mentions only biliary 
surgery, it does not take a deep knowledge of medicine to fire 
that diagnostic rule. In both these cases domain knowledge is 
needed, but, the reasoning involved is not diagnostic reason- 
ing in our specific technical sense. One can imagine an expert 
diagnostician turning, in the course of her diagnostic reason- 
ing, to a nurse in charge of the patient record and asking if 
there was evidence of anesthetic exposure or of abdominal 
surgery, and the nurse answering affirmatively in both t,he 
instances without his being trained in diagnosis at all 

When we faced this problem in the design of MDX, we 
realized that it would be very inelegant to combine reason- 
ing of this type with the diagnostic reasoning that we had 
isolated as a specific type of problem-solving activity. We 
were led to the creation of a separate subsystem for manag- 
ing patient data, much like the nurse alluded to earlier. For 
all questions concerning manifestations, MDX simply turned 
to this subsystem, which performed the relevant reasoning 
and returned the answer We were surprised to discover 
that all the retrieval activities of this ‘<data base assistant” 
could be captured in a uniform paradigm, to be elaborated 

MEDATA 

l-blot hone 
Figure 2 

shortly. Mittal (Mittal, 1980) describes this in detail as do 
the references (Mittal, Chandrasekaran, 1981) and (Mittal, 
Chandrasekaran, 1969). Similar to our discussion regard- 
ing the diagnostic task, we just touch upon the issues here 
sufficient to make our main points regarding decomposition. 

This data base-called PATREC-is organized as a hierar- 
chy of medical data concepts. A fragment of the hierarchy 
is shown in Fig. 2 

At a representational level: there is nothing novel here: 
each medata concept is represented as a frame, and the 
inference rules that we will describe shortly are implemented 
as “demons” or “procedural attachments.” However what 
will be worth noticing is the fact that all these rules will be 
of a certain uniform type. For the purpose of illustration, 
let us consider the SURGERY concept. SURGERY frame has 
LOCATION and PERFORMED? slots, among others. The 
“PERFORMED?” slot has the following rules: 

1. If no surgery in the enclosing organ, surgery not 
done. 

2 If surgery in a component, infer surgery in this organ. 
3. If no surgery in any of the components, then infer no 

surgery in this organ. 
4 If evidence of anesthetic, infer “possibly ” 

The DRUG frame has the following rules in the GIVEN? 
slot: 

1. If any drug of this type given, infer this drug also 
2. If the drug class was not given, rule out this particular 

drug. 
3 If all drugs of this type were ruled out, rule out the 

class too 

These rules need not be attached to the successors of 
DRUG, since they can inherit these rules-this is a fairly 
standard thing to do in frame-based systems. A successor 
may have further rules which are particular to it, e.g. the 
ANESTHETIC concept has the rule: 

If major surgery, infer ANESTHETIC given, possibly 

Let us reemphasize that the interesting thing about the 
system is not 

rare knowledge base system that doesn’t-but that it is a 
collection of conceptual specialists tuned to a particular type 
of problem-solving. All the embedded inference rules have a 
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common structure: derive the needed data value from data 
values relating to other concepts. The inferential knowledge 
that is encoded in the concepts is specific to the data retrieval 
task in a data base activity. 

Let us consider some examples Suppose the stored 
datum is that “Patient was given halothane.” The HALO- 
THANE frame now has its GlVEN? slot filled with “Yes.” 
Consider the following series of questions: 

Q1 Given Anesthetic 
-4: 173s 

(ANESTHETIC specialist inherits the rules from the 
DRUG frame Rule 1 generates the question, among 
others, “Given Halothane?” “Yes” is propagated up- 
wards ) 

Q2 Any Surgery performed? 
A : Possibly 

(SURGERY specialist fails with rules 1, 2 and 3 Rule 
4 places query “Given Anesthetic?” to ANESTHETIC 
specialist “Yes” answer results in “Possibly” to Q2 This 
is an example of lateral inheritance ) 

Similarly if the stored datum were “Patient had major 
surgery,” and the query were, “Given Anesthetic?“, rule 1 in 
ANESTHETIC would have given the answer “possibly.” 

Another more complex example of data retrieval reason- 
ing by PATREC is the following: 

the 

DA4TA: A liver-scan showed a filling defect 
in t.he left. hepatic lobe. The liver 
was normal on physical exam 

Q : Liver Normal? 
A: No 

(On liver-scan data, the following chain of inference 
took place: (a) filling-defect. in lobe + lobe not normal; 
(b) If <camp-of> liver not normal + liver not nor- 
mal. On the other hand, Physical examination produced 
“Normali’ as answer. By using a general principle that 
when there are contending answers, non-default value 
should be chosen-the default for “Normal?” slot of 
LIYJSR is “Yes’‘-the answer “No” was generated ) 

The main points relevant here are, as in the case of 
diagnostic task: (1) There is no separation between a 

knowledge base and a problem-solver Problem-solving is 
embedded in the knowledge structure. (2) All the concep- 
tual specialists perform the same type of problem-solving, 
in this case, inheritance of data from other specialists. (3) 
Concepts with the same name, say LrVER, in the diagnos- 
tic structure and the data retrieval structure have different 
pieces of knowledge and do different, things This is akin to 
the fact that the LIVER concept of a diagnostician is bound 
to be different from that of the data base nurse. The concepts 
in this sense are “tuned” for different types of knowledge use. 

What- Will-Happen-If (WWHI) 
Or Consequence Finding 

We said that among the many types of problem-solving 

that take place in a knowledge-rich domain is that of answer- 
ing questions of the form “What will happen if X is done?” 
Examples are: “What will happen if valve A is closed in this 
power plant when the boiler is under high pressure?“; “What 
will happen if drug A is administered when both hepatitis 
and arthritis are known to be present?” Questions such as 
this can be surprisingly complex to answer since formally it 
involves tracing a path in a potentially large state space. Of 
course what makes possible in practice to trace this path is 
domain knowledge which constrains the possibilit,ies in an 
efficient, way. 

The problem-solving involved, and correspondingly the 
use of knowledge in this process, are different from that of 
diagnosis For one thing, many of t,he pieces of knowledge 
for the two tasks are completely different. For example, con- 
sider answering the question in the automobile mechanic’s 
domain: “What will happen if the engine gets hot?” Look- 
ing at all the diagnostic rules of the form, “hot engine --f 
<malfunction >” will not be adequate, since <malfunction > 
in the above rules is the cuuse of t.he hot engine, while the 
consequence finding process looks for the effects of the hot 
engine Formally, if we regard the underlying knowledge as 
a network connected by cause-effect links, where from each 
node multiple cause links as well as effect links emanate, 
we see that the search processes are different in the two in- 
stances of diagnosis and consequence-finding The diagnostic 
concepts that typically help to provide focus and const,rain 
search in the pursuit of correct causes will thus be different 
from the WWHI concepts needed for the pursuit of correct 
effects. 

The embedded problem-solving is also correspondingl> 
different. We propose that the appropriate language in which 
to express the consequence-finding rules is in terms of state- 
changes To elaborate: 

1 WWHI -condition is first understood as a state change 
in a subsystem. 

2. Rules are available which have the form “<state 
change in subsystem> will result in <state change 
in subsystem>” Just as in the case of the diagnosis 
problem, there are thousands of rules in the case of 
any nontrivial domain Again, following t.he diagnos- 
tic paradigm we have already set, we propose that 
these rules be associated with conceptual specialists 
Thus typically all the state change rules whose left 
hand side deals with a subsystem will be aggregated 
in the specialist for that subsystem, and the right 
hand side of those rules will refer to the st.ate changes 
of the ammediately affected systems 

Again we propose that typically the specialists be or- 
ganized hierarchically, so that a subsystem specialist, given 
a state change to it, determines by knowledge-based reason- 
ing the state changes of the immediately larger system of 
which it is a part and calls that specialist with the informa- 
tion determined by it, This process will be repeated until 
the state change(s) for the overall system, i e , at the most 
general relevant level of abstraction, are determined. This 
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Figure 3 

form of organization of the rules should provide a great deal 
of focus to the reasoning process. 

An Illustrative Example. Consider the question, in 
Che domain of automobile mechanics, “WWHI there is a leak 
in the radiator when the engine is running?” We suggest the 
specialists are to be organized as in Fig 3. 

The internal states that the radzator fluid subsystem 
might recognize may be partially listed as follows: {leaks/no 
leaks, rust build-up, total amount of water,...}; similarly, the 
fan subsystem specialist might recognize states {bent/straight 
fan blades, loose/tight/disconnected fan belt,...}. The cool- 
zng system subsystem itself need not recognize states to this 
degree of detail; being a specialist at a somewhat higher level 
of abstraction it will recognize states such as {fluid Aow rate, 
cooling-air flow rate...etc.}. Let us say that the radiator jluzd 
specialist has, among others, the following rules. The rules 
are typically of the form: 

<internal state change> -+ <supersystem state 
change > 

leak in the radiator + reduced fluid flow-rate 
high rust in the pipes -+ reduced fluid flow-rate 

no antifreeze in the water 
and very cold weather + zero fluid flow etc. 

The cooling system specialist might have rules of the 
form: 

low fluid-flow rate and engine running + engine state hot 
low air-flow rate and engine running --f engine state hot 

Again note that the internal state recognition is at the ap- 
propriate level of abstraction, and the conclusions refer to 
state changes of its parent system. 

It should be fairly clear how such a system might be 
able to respond to the query about radiator leak. Again a 
blackboard for this task would make it possible to take into 
account subsystem interaction. 

Unlike the structures for the diagnostic and data retrieval 
tasks, we have not yet implemented a system performing 
the WWHI-task. While we cannot speak with assurance 
about the adequacy of the proposed solution, we feel that 
it is of a piece with the other systems in pointing to the 
same set of morals: embedding still another type of problem- 
solving in a knowledge structure, which consists of cooperat- 
ing specialists of the same problem-solving type 
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Knowledge-Use Taxonomy 

There has been a growing realization in the field that 
the important issue in knowledge systems is to determine 
how knowledge is to be used. Our foregoing examination of 
the three tasks-each of which is not some ad hoc need for 
medical reasoning, but is a generic task that arises in a num- 
ber of domains-leads us to propose the following theses. 

1. There is taxonomy of problem-solving regimes that 
are involved in expert problem-solving. We have 
identified three members of this taxonomy 
l diagnostic (classificatory): establish-refine, top- 
down. 
l consequence-finding: abstract state from low-level 
description to higher-level description, bottom-up. 
l data retrieval: inheritance/inference of values from 
data values in other concepts. 
There are obviously more. Our research is oriented 
towards finding more elements of this taxonomy and 
determining their interrelationships 

2. For each type of problem-solving there is a separate 
knowledge structure, with the associated p.s. regime 
embedded in it. Thus a domain of knowledge can be 
decomposed into a collection of structures, each of 
which specializes in a p.s. type. We can call this a 
horizontal decomposition of the domain. 

3. Each of the structures in (2) above can be further 
decomposed into a collection of specialists, all of 
whom are of the same p.s. type, but differ from each 
other in the conceptua1 content We have indicated 
how this decomposition can be done for the three 
tasks considered. We term this decomposition a ver- 
tical decomposition. 

A Paradigm Shift 

The prevalent approach to knowledge base systems is 
based on the decomposition in Fig 4: 
In this paradigm, knowledge representation is separated from 
its use. This approach has the attraction of generality and 
a certain kind of modularity. 

The representational questions are dealt with in this 
approach in a manner to satisfy the criterion of expres- 
siveness, or so-called epistemological adequacy of McCarthy 

(McCarthy, Hayes, 1969). The efficiency responsibilities are 
put on the shoulders of the inference mechanisms; they have 
to have the so-called heuristic knowledge in order to use the 
knowledge efficiently for problem-solving. Our approach is 
based on a rather different decomposition of the same prob- 
lem, as indicated in our discussion on horizontal decomposi- 
tion in the previous section. 

Pictorially, the viewpoint of knowledge-based systems 
that we advance can be given as Fig. 5. 

Thus the overall knowledge system is viewed as a collec- 
tion of specialists in inference types, who cooperatively solve 
a given problem. While in the figure we have indicated the 
communication among these specialists to be unconstrained, 
in fact, however, it may not be so. There may be reasons 
why only certain problem-solving specialists can talk to other 
problem-solving specialists. This is an open research prob- 
lem in our approach. 

Production Rule Methodology. In most of the 
preceding discussions the representation of knowledge has 
been in the form of rules. We feel that this is not acciden- 
tal, but that rules represent a basic form of cognition, viz., 
“how-to” knowledge. This was recognized early in AI by 
Newell and Simon (Newell, Simon, 1972) who named the 
rules production rules. Later, the Stanford Heuristic Pro- 
gramming Project and others extended this production rule 
methodology for a wide class of expert system design prob- 
lems. We are thus in agreement with the use of rules as a 
basic knowledge representation formalism in expert systems. 

There are two aspects in which our methodology differs 
from current work on rule based systems. We have already 
alluded to the difference in the viewpoint which regards 
knowledge not as an independent structure to be used by 
different problem-solvers, but as embodiments of implicit 
problem solving knowledge. Related to that is the idea that 
the central determinant of effective use of knowledge is how 
it is organized Our approach begins to provide criteria for 
performing the organization of a complex body of knowledge. 
It is well-known that production rules need to be organized 
not simply for purpose of efficiency, but for focus and control 
in problem-solving (see (Lenat, Harris, 1978) for a discussion 
of these issues). We are proposing two organizing constructs, 
which extend the production rule methodology to make it 
applicable to a larger class of problems. One const’ruct is the 
problem-solving regime and the other is that of a conceptual 
spectalist 

Related to these organizational notions is the other 
aspect of the difference between our approach and the 
current production rule methodologies. We do not use 
uniform problem-solving mechanisms (backward chaining, 
e.g.) across the whole domain. As indicated, the problem- 
solving method differs from knowledge structure to knowledge 
structure. 
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Role of “Deep” Models 

Deep and Compiled Structures. Recently Hart 
(Hart, 1982) and Michie (Michie, 1982) have writ,ten about 
the “depth” at which knowledge is represented and used 
in problem solving by expert systems Distinctions such as 
“deep” vs “surface” and “high road” vs “low road” have been 
made in this connection. There is no clear definition of what 
constitutes a deep model - in fact precisely that issue is an 
open area of research in the field, but the intuition is that 
it models the underlying processes of the domain. Michie 
remarks that most expert systems that are extant don’t have 
deep models in this sense, but instead can be viewed as a data 
base of patterns with a more or less simple control structure 
to navigate through the data base. It is argued that surface 
systems of this type have inherent limitations in hard prob- 
lems, and that a system which has a deep model will be able 
to turn to it when faced with an especially knotty problem, 
much like a human expert might resort to “first principles” in 
a similar situation. In addit*ion to deep models of the domain, 
the human problem solver also uses other sorts of knowledge 
such as “common sense” knowledge of various kinds. 

In the rest of the discussion in this section we will ex- 
plicitly consider the diagnostic task only. But the arguments 
will apply to other tasks as well. 

We argue in (Chandrasekaran, Mittal, 1982) for a thesis 
which might at first sound counter-intuitive. Let us assume 
that we wish to design a diagnostic system in a particular 
domain. Let us further assume that we can successfully 
construct a deep model of the domain, and also specify the 
problem solving processes that will operate on that model. 
The thesis that we argue in (Chandrasekaran, Mittal, 1982) 
is as follows. Between the extremes of a data base of pat- 
terns on one hand and representations of fdeep knowledge 
(in whatever form) on the other, there exists a knowledge 
and problem solving structure - along the lines outlined in 
the section on the diagnostic task in this paper - which (1) 
has all the relevant deep knowledge “compiled” into it in 
such a way that it can handle all the diagnostic problems 
that the deep knowledge, if explicitly represented and used 

in problem-solving, can handle; and (2) will solve the diag- 
nostic problems more efficiently than the deep structure can; 
but (3) it cannot solve other types of problems- i.e , problems 
which are not diagnostic in nature - that the deep knowledge 
structure potentially could handle. The argument is rather 
detailed, but the essence of it consists of analyzing the ways 
in which the diagnostic structure may fail to solve a par- 
ticular problem, and tracing that failure to either missing 
knowledge in the deep model itself or in the problem solving 
processes that operate on it. Thus the range of dzagnostic 
problems that can be solved with the deep model is exactly 
coextensive with the problems solvable with the diagnostic 
problem solving structure that can be derived from it. 

There is another way of looking at this. There is a 
natural decomposition in the problem solving responsibilities 
between the underlying knowledge structures and the diag- 
nostic structure. The former builds the diagnostic structure 
and the latter solves specific diagnostic problems. Human 
experts often resort to deep models because the diagnostic 
structures are in general incomplete This decomposition 
also translates into a natural division of responsibility for 
explanation of decisions. See (Chandrasekaran, Mittal, 1982) 
for more discussion on this. 

Multiple Uses of Knowledge. It is possible that there 
will be some redundancy in knowledge represented in our ap- 
proach, since it calls for knowledge to be encoded in a prob- 
lem solving st,ructure according to its usage - some pieces of 
knowledge may appear in several structures (See comments 
in (Gomez, Chandrasekaran, 1981) on redundancy and bias- 
ing of knowledge.) Is this a good thing? 

We have a choice: (I) We can have the knowledge in 
a deep enough form, but as, say, a diagnostic problem 
presents itself, we can first generate fragments of diagnos- 
tic knowledge as needed and use it to solve the given prob- 
lem. Similarly for a WWHI problem, etc. Or, (2) we can 
choose the tasks to be experts in , compile the problem solv- 
ing structures for them, accepting some redundancy. The 
latter is faster for those tasks for which they are designed, 
the former is more economical in storage. A classic trade-off! 
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In a sense the former situation describes, e.g., a bright 
medical school graduate who has a functional understanding 
of the phenomena of the human body, but that knowledge 
is not yet molded into effective problem solving structures of 
particular types. We suspect that what happens even among 
experts is that they build powerful problem solving struc- 
tures to account for a good portion of foreseeable situations, 
and thus need to resort to the deeper structures only for the 
harder problems. This is a compromise between the require- 
ments of expertise and memory. 

The Nature of the Deep Model 

There is an additional problem with option 1 in the 
current state of the art: we don’t know how to do it! This 
requires an adequate theory of the nature of the deep model. 
When a person newly understands how a device works, e.g., 
it is doubtful that what he has acquired is merely a collection 
of rules or facts, or a network of causal relations. One 
can have all these and still not “understand.” The sense 
of understanding must correspond to some organization of 
these pieces of knowledge for some class of purposes. The 
organization must be such that it can be processed to produce 
problem solving structures for various tasks. The nature of 
the deep model is an extremely important area of research. 
The work of (Rieger, Grinberg, 1976), (Pople, 1982), (Patil, 
1981) and (de Kleer, Brown, 1982), to name a few researchers 
who have looked at this problem, seem very relevant here. 
However, in order to adequately represent knowledge at this 
level, notions of an organizational nature particular to that 
level also seem important. 

On Hierarchies 

In all the tasks that we considered in this paper, the 
knowledge structures were strongly hierarchical. While 
hierarchical organizations have a strong intuitive appeal, in 
AI there is also a strong tradition of “heterarchies” and net- 
work structures. Difficulties with hierarchical classification 
structures have been noted in (Fahlman, et al, 1981). Also 
concerns such as “the world is not hierarchical” are voiced 
in response to proposals for hierarchical organizations. 

This is not the place to discuss the important issue of 
hierarchical structures in problem solving. The following 
brief remarks should suffice for our purposes. First of all, 
the main thesis about decomposing knowledge by problem 
solving types and embedding of the problem solving in the 
knowledge sources is itself independent of whether the struc- 
tures for a problem solving type are hierarchical. Secondly, 
our general strategy has been to start by looking for hierar- 
chical decompositions, and where there seems to be a need 
for communication outside of the hierarchical channels, to 
provide it, in a carefully controlled fashion such as the black- 
boards discussed in (Gomez, Chandrasekaran, 1981). (See 
(Chandrasekaran, 1981) for a discussion of different kinds 

of communication needs in a distributed problem solving 
situation.) For example, in (Gomez, Chandrasekaran, 1981) 
we discuss how certain kinds of relations between disease 
hypotheses belonging to different portions of the hierarchy 
- such as disease A being secondary to disease B - can be 
handled within a hierarchical framework by the use of black- 
boards. Finally, it ought to be stated clearly that hierarchies 
are not “out there,” but imposed by the thought processes 
for control over problem solving. Thus it is a powerful 
weapon, but by no means a sufficient one. It will be rash 
to conclude that all complex problem solving in all com- 
plex domains can be crisply conducted in a single hierar- 
chical framework. Reasoning about feedback and reason- 
ing with multiple perspectives are two examples where addi- 
tional machinery seems to be needed beyond the hierarchical 
framework. 

The Organization of the Medical Community 

Evidence of Horizontal Decomposition. The medi- 
cal community collectively is a good case study in the prin- 
ciples by which knowledge may be structured for cooperative, 
effective problem-solving Corresponding to our notion of 
horizontal decomposition along the lines of problem-solving 
types, we can identify clinicians, educators, pathologists, 
radiologists, medical records specialists, etc. Clinicians com- 
bine the diagnostic and predictive knowledge structures, for 
practical reasons having to do with the close interaction 
between diagnosis and therapy. Medical record specialists, 
as their name indicates, serve to organize patient data and 
retrieve them effectively. Radiologists are not diagnosticians 
in the same sense as clinicians are: their problem-solving is to 
reason from imaging descriptions to confirm or reject diag- 
nostic possibilities; they are largely perceptual specialists. 

Evidence of Vertical Decomposition. Correspond- 
ing to our vertical decomposition, many of the above problem- 
solvers are organized into conceptual hierarchies. For in- 
stance, an internist is the top-level diagnostic specialist, who 
may call upon liver or heart specialists for further investiga- 
tion of a problem. The top-down problem-solving for diag- 
nosis is indicated by the fact that a sick person typically first 
goes to an internist, who may refer the patient on to more 
detailed specialists. 

Evidence for Embedding Problem-Solving. If the 
medical community were organized according to the cur- 
rently accepted paradigm in expert systems, i.e , a com- 
mon knowledge base shared by different problem-solvers who 
themselves are without domain-knowledge, one would ex- 
pect to have knowledge-specialists, who would be rather like 
encylopaedias, and problem-solving specialists who would 
possess expertcalgorithms for, say, diagnosis, without any 
medical knowledge about particular medical concepts. Thus 
whenever a patient came, the diagnostic specialist would con- 
sult the knowledge-base specialist and together they would 
arrive at a diagnostic conclusion. 
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However, that is not the way the community works. In- 
stead we find that experienced medical specialists possess 
expertise which is not a raw knowledge-base, but which 
is highly effective in problem-solving. On the other hand, 
a medical student without clinical experience is more like 
a pure knowledge-base As he or she becomes more ex- 
perienced in various types of problem-solving, the unstruc- 
tured knowledge base slowly begins to shape and structure 
itself, so that pieces of knowledge are tuned for ready and 
effective use. 
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