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Summary 

Eurisko is an AI program that learns by discovery We are apply- 
ing Eurisko to the task of inventing new kinds of three-dimensional 
microelectronic devices that can then be fabricated using recently de- 
veloped laser recrystallization techniques Three experiments have been 
conducted, and some novel designs and design rules have emerged. 

The paradigm for Eurisko’s exploration is a loop in which it. generat,es 
a new device configuration, computes its I/O behavior, tries to “parse” 
this into a functionality it already knows about and can use, and then 
evaluates the results In the first experiment, this loop took place at 
the level of charged carriers moving under the effects of electric fields 
thl ough abutted regions of doped and undoped semiconductors. Many 
of the well-known primitive devices were synthesized quickly, such as 
the MOSFET, Junction Diode, and Bipolar Transistor. This was un- 
surprising, as they were short sentences in the descriptive language we 
had defined (a language with verbs like Abut and ApplyEField, and 
with nouns like nDopedRegion and IntrinsicChannelRegion) Future 

We wish to thank those graduate students who have aided us in the 
construction of RLL, the language in which Eurisko is written, most 
notably Greg Harris at CMIJ and Russ Grciner at Stanford. For advice 
and ideas during the design and construction of Eurisko, we thank .John 
Seely Brown, Bruce Buchanan, Ed Feigenbaum, Mike Genesereth, and 
Herb Simon Harold Brown and Mark Stefik and their collaborators 
paved the way for the encroachment of AI int>o VJSI design, and we 
are grateful to them for reports of their efforts. The excellent computa- 
tional facilities of Xerox PARC’s CIS made it possible to build Eurisko 
quickly and to run it for long periods of time on several machines. A 
round of thanks to the Interlisp-D group both for their language and 
for excellent response to suggestions and bugs Theoretical aspects of 
this research were funded by ONR N00014-80--C-0609. 

innovation at this level would require adding a large knowledge base of 
physical equations, judgmental rules for employing them, and numeri- 
cal routines for efficiently applying them 

Rather than carrying out this expansion, we decided to seek a higher, 
less numerical level of abstraction at which to design new devices Prc- 
viously, our program had worked at a purely geometric level, where 
each region had a precise size, shape, and orientat,ion. Briefly, we con- 
sidered a purely topological level, where only conduction paths mat- 
tered This proved too abstract, as most of the designs that were 
efficient at that level were unrealizable geometrically. WC derived an 
intermediate level, that of “tiles.” The tile model posit,s that each 
region (channel, metal, etc ) is a cube (or other space-filling element) of 
three-space of approximately the same size A device is a lattice of tiles 
in a particular 3-D configuration The philosophy was that if Eurisko 
could produce an interesting design at that level, Gibbons could find a 
way to fabricate it using the new high-rise chip techniques. 

In our first attempts to work at the tile level, Eurisko carried out sys- 
tematic exhaustive searches with few useful new designs This gave us 
an appreciation for the size of the starch space. During one week-long 
run, the program serendipitously synthesized a very compact three- 
dimensional design for a flip-flop 

Our final experiment was also at the tile level, but in this case 
Eurisko employed a body of heuristics to guide the synthesis of new 
devices These informal judgmental rules served as both plausible move 
generators and implausible move eliminators Almost immediately, the 
“Symmetrize” heuristic produced a very powerful yet simple device, one 
which simultaneously computes NAND and OR using only two small 
metal regions, two n-doped regions, two p-doped regions, and one in- 
t.rinsic channel region. These devices are composahle in two ways- 
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Relevant Recent Developments 

Some important AI advances that underlie our explorations of this interdisciplinary synthesis include 

1 Operational AI programs that can reason-and discover new concepts-in specialized domains of knowledge, 

2 AI systems that can introspect and monitor their own performance and discover new algorithms and heuristics, 

3. Emergence of the AI subfield called knowledge engineering and its accumulation of experience in applying heuristic methods 

to problem solving, search, and design tasks in several technical domains 

Some important microelectronic fabrication advances that provide important assumptions to this and other projects include: 

1 Recrystalization of silicon films to make multilayer “high-rise” circuit structures, and structures no longer limited to wafer- 

sized areas, 

2 The use of (nearly-)intrinsic channel material-that is, a region that can support a channel of electrons or holes, depending 
only on what types of doping its neighboring regions exhibit, 

3 Increasing computer control of fabrication equipment--fabrication operations are becoming more precisely defined and thus 
more faithfully representable inside a knowledge base, 

4 The potential to merge CAD and CAM in the electronics domain into a new form of operation where design, fabrication, and 

testing are intertwined, 

5 Doping patterns need not be rectangular, but may be hexagonal or even irregular The limiting factor is no longer “difficulty 
of fabrication,” but rather “complexity of design ” 

Figure 1 The recent developments upon which this research is founded 

they pack into the plane and they stack on top of each other, so the 
asymptotic number of regions used is reduced t,o one of each type The 
device is unconventional in that currents of both holes and electrons 
must coexist (and cross) inside a single thin film layer In April 1982, 
the design was “proved” by Gibbons by successfully fabricating them 
in his labor atory These devices now form the primitive building blocks 
of Eurisko’s latest high-rise chip designs 

Besides the useful devices, we now have a few useful heuristics for 
the task of designing three-dimensional VLSI circuits: in every second 
metal layer, wires should run N-S (and in the other metal layers, E-W); 
any 3-D folding of a 2-D design should replace (most of) the pairs of 
gates sharing a common control by single pieces of metal serving simul- 
taneously as gat.es for regions above and below t,hem; etc Our cur- 
rent research is aimed at getting Eurisko to design three-dimensional 
microelectronic devices for more complex functions and to discover ad- 
dif.ional informal rules for designing such circuits 

Background: Recent Developments in AI 
and Microelectronic Fabrication 

The late seventies produced technological improvements 
in both microelectronic fabrication capabilities and in artifi- 
cial intelligence systems (see Fig. 1). These parallel devel- 
opments have suggested using AI techniques for designing 
or discovering new microclect,ronic circuit structures. This 
article reports on one such interdisciplinary research effort. 

Relevant recent developments in microelectronic 
circuit fabrication. One central advance in microcir- 
cuit fabrication m&hods that is motivating our effort,s is 
the ability t,o build three-dimensional st,ructures- so-called 
“high-rise chips.” A thin film of deposited silicon can 
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be melted in place and recrystallized into transistor-grade 
material. Appropriate related steps of doping, oxide growth, 
and metal deposition have been shown t,o produce working 
devices. Lee et al. (1978) showed that both enhancement 
and depletion mode devices could be made in recrystallized 
polysilicon, and Gibbons and Lee (1980) produced a one-gate- 
wide CMOS inverter in which a single piece of metal served 
as the gate control for two transistors-one above the metal 
and one below it. 

One begins with a normal t,wo-dimensional MO!? chip, 
adds a new layer of amorphous silicon “frost” on top of 
it, scans and recrystalizes it with a laser, dopes the new 
silicon layer, deposits a new gate-oxide and metal pattern 
on top of that, then deposits a new layer of silicon frost, 
scans it, etc. In this way, arbitrarily many alternating layers 
of metal and semiconductor are assembled into a “high-rise 
chip,” much like a layer cake or a piece of plywood. The 
resulting structure contains many active devices in a very 
small volume. To date, the number of layers has been small 
(only a few 3-ply layers), but this is due more to a lack 
of worthwhile designs to fabricate rather than to technical 
problems with the process. 

An intriguing opportunity is to dispense with the “bot- 
tom silicon crystal” entirely-just start with, say, a sheet of 
glass. In this way, the area of the structure is not limited 
to single-crystal wafer-sized regions, but could be arbitrarily 
large (e.g., the size of a CRT display screen, or a dashboard, 
or a desk-top). While these possibilities are exciting and 
probably will be important in the future, they would demand 



a major laboratory retooling One big advantage of the laser 
recrystallization process is that many existing commercial 
VLSI fabrication facilities already have the equipment re- 
quired for that process and, thus, can produce high-rise chips 
provided they are at most wafer-sized. 

One concern is that of yzeld. Given no dramatic increase 
in the reliability of fabrication techniques, any enormous 
structure is bound to contain many faults. Besides the usual 
design techniques for overcoming this (e.g., redundancy), 
a new technology that may be important is the ability to 
dynamically monitor the complex structure as it is being 
fabricated, layer by layer. That is, one might fabricate “wit,h 
the power on.” If part of one layer has too many faults, the 
program might alter the design of the rest of the layer at 
that moment before the computer advances the laser or ion 
implantation beam If an entire layer is unacceptable, one 
might, even evaporate it and try again. This merging of CAD 
and CAM might open up a new paradigm for the design and 
production of microelectronic structures. 

The second major innovation we are relying on is the 
use of intrinsic--or nearly-intrinsicPmchannel material. This 
is a region of semiconductor material that is so lightly doped 
that it can support a channel of electrons or holes, depending 
only on what types of doping its neighboring regions exhibit. 
This advance, like t,he one before it, explodes the size and 
complexity of the design problem. 

As more and more of the fabrication process comes under 
computer control, it becomes easier---and more worthwhilc-- 
to represent fabrication knowledge within a knowledge base. 
Once the knowledge is accessible to artificial intelligence 
programs, t,hey can carry out tasks involving planning, 
dynamic monitoring and replanning, and (as we shall dis- 
cuss in detail) guided exploration for novel devices, mask 
configurations, fabrication sequences, and post-production 
tailoring via recrystallization. 

With computers doing much of t,he design and fabrica- 
tion, there is less need to make the doping patterns rectan- 
gular. For example, if a gate is to join five regions, we can 
shape it as a hexagon (still leaving one edge of the hexagon 
free to have metal deposited over it, prior to doping, if that 
is the order of fabrication steps that finally is employed). 

All of these notions are exciting. The excitement is 
dimmed slightly by the question: “What do WC use all this 
for, exactly?” To answer that question, we turn to a very 
different part of computer science-artificial intelligence. 

The limiting step in the VLSI world is not so much 
fabrication techniques as coping with the combinatorial ex- 
plosion of the design problem. A vast new and as yet 
unexplored design space for three-dimensional microcircuit 
elements is being opened. The size of this search space 
makes it a promising domain for some kind of AI approach 
Recent developments in AI suggest trying an automated in- 
duction approach, that is, building a program that learns- 
by discoveryPnew physical devices, circuits, and more or less 
informal rules for designing them What are the AI results 
that suggest this? 

Relevant recent developments in artificial intel- 
ligence. In the past decade, a style of AI program has 
emerged known as expert systems. These programs work 
in real-life technical domains, such as medical diagnosis, 
mineral or oil exploration, and planning genetics experiments 
(see, e.g., Feigenbaum, 1977). The human expert works with 
a computer scientist, known as a knowledge engineer, who 
enters the expert’s knowledge into a program. The first 
body of knowledge extracted from the expert inva.riably com- 
prises terms, facts, standard procedures, etc.-the kind of 
knowledge one would read about in journals and tcxthooks 

But programs with only this type of information do not, 
perform well. A cyclic procedure is followed to improve the 
prograin-the knowledge engineer has the program try to 
work on a problem or cast, the expert disagrees with its 
reasoning at some point, and the knowledge engineer forces 
the expert, at that moment, to introspect, on what extra 
knowledge he or she is bringing to bear. This usually results 
in the expert explicating a judgmental rule, an informal hit 
of wisdom we refer to as a heurrstzc. These heuristic rules 
are rarely discussed verbally. Rather, the apprentice (intern, 
graduate student, etc.) is expected to induce them from 
experience by watching a master at work. As more and 
more heuristics are added to the program, it incrementally 
approaches the expert in competence at the task. 

Most. AT texts talk about heurist,ics as if they were rules 
that helped you constrain a search by pruning away im- 
plausible moves Some of the heuristics that emerge in the 
knowledge engineering cycle do indeed have this flavor, but 
many heuristics appear to serve a very different role-- they 
propose plausible moves to try, plausible promising actions 
to carry out in certain situations In the “implausible con- 
strainer” sense, as you add heuristics you have less and less 
to consider; in the “plausible suggester” sense, when you add 
more heuristics you have more to do. This notion of heuris- 
tics as plausible move generators is useful when the space to 
be explored is too immense to even consider having a legal 
move generator as your primary engine. 

The field of knowledge engineering has hy now con- 
tributed much in the way of representations for knowledge, 
control structures for managing large collections of heuristic 
rules, languages that, facilitate the construction and dehug- 
ging of enormous programs, ways of validating the perfor- 
mance of expert syst,ems, etc. One can think of our tasks--- 
designing three-dimensional microcircuitsPas such an expert 
t,ask It involves a search through an enormous space of pos- 
sibilities, there is much technical information to represent 
and use, it is a task of interest, and practical utility, and 
it is a domain where no algorithmic approach is known at 
present. In short, it satisfies most of the criteria for at,tack 
by the knowledge engineering approach. 

The nature of the three-dimensional microcircuit design 
task is one of open-ended exploration in a large space where 
the goals are criteria such as lower power, higher gain, 
smaller space, less time, fewer masks, etc. These criteria 
are not too diflicult to test, but they are of little aid in in- 
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venting novel designs that satisfy them. Although most ex- 
pert syst~e~ns have performed tasks that were classificatory 
(c g , diagnosis), only some have dealt with problems of 
design, and a couple have tackled problems that involved 
open-cndcd concept discovery and explorat,ion (see, e.g., AM, 
Davis and Lenat,, 1981; Browser, Dankel, 1979). 

AM was given the definitions of a hundred concepts from 
finite set theory and a body of two hundred heuristic rules 
that guided it in forming plausible definitions, gathering 
data about those new concepts, noticing regularities in the 
dat,a, forming plausible conjectures thereby, designing and 
carrying out experiments to test them, and (to close the loop) 
extracting useful new definitions based on these results. 

To get the flavor of AM, consider this mathematics 
heuristic: 

Given an interesting function f : A X A + B, 
It’s worthwhile defining and studying g(z) = f(x, 2) 

When f is Multiplication, the derived function g is Squaring; 
when [ is Addition, the heuristic causes us to define and 
study Doubling. When f is a predicate such as Greater-Than, 
it causes us to notice that a number is never greater than 
itself. When f is Int,ersection, it points us tJo the fact that 
Intersect(z, X) = 2. The use of this heuristic is not limited 
to mathema,tics, of course. We could make f the binary 
relation Employed-By, in which case g defines the predicate 
Self-Employed. Once a new concept has been defined, it is 
of-ten a relatively straightforward aflair to find instances of it 
and then to look for patterns in that data (see Polya, 1945). 

In one hour-long run on a KI -10, the AM program defined 
two hundred new concepts, of which about half were reason- 
able, recognizable mathematics objects (including the empty 
set, natural numbers, and primes), operators (including 
compose-with-itself, addition, factoring), and conjectures 
(including de Morgans laws, the unique factorization theorem, 
and a strange regularity involving numbers with very many 
divisors). 

One difIiculty with AM was that, as it began to work 
in fields further and further removed from set theory, its 
initial set of heuristics was not adequate to guide it away 
from implausible concepts (e.g., numbers that are both odd 
and even) and toward plausible ones. This need for new, 
domain-specific heuristics for each new field raises a serious 
problem with our microcircuit design task. 

The task of exploring the space of high-rise chip designs 
is analogous to AM exploring the space of set theory concepts 
in all major respects save one-there are as yet no human 
cxpcrts in the field. There is no one who knows what the 
heuristics are. It is easy to find and program hundreds of 
heuristics for dealing with sets and functions, but it is impos- 
sible to do so for high-rise chips. The few people now work- 
ing in t,he field arc employing analogues of heuristics from 
two-dimensional VLSI design, which in turn got most of its 
heuristics from even older technologies where, for example, 
wires were cheap and small entities The economies, trade- 
offs, and opportunities for local optimizations and counterin- 
tuit,ive designs are very different in VLSI design, and even 

after several years only a partial set of design heuristics has 
emerged. We expect just as radical a change in design when 
going from two to three dimensions, and nil of those new 
heuristics are waiting to be discovered. 

The relevance of AI does not end a.t this point. WC refer 
to a program that learns new heuristics by discovery, in- 
ducing them from experiences it has while exploring. This 
program, Eurisko, is described at, length in Lenat (1982a, 
198213). In brief, its presumption is that just as a body of 
heuristics was able to guide AM in discovering set theory 
concepts, a body of heuristics might be able to guide a pro- 
gram in discovering, testing, and modifying new heuristics 
This might seem to be dangerously circular, but in fact some 
useful results have been obtained by applying a heuristic to 
itself. Consider the following heuristic: 

IF F is sometimes useful but sometimes just takes up a 
lot of time, 
THEN try to find some specializations of F. 

This rule was rclcvant and useful sometimes, but sometimes 
took up a lot of time to apply. Therefore, the heuristic was 
relevant, to itself. Eurisko applied it to itself and produced 
several new, more specialized heuristics, a useful one of which 
was: 

IF F is sometimes useful, but, usually just takes up a lot 
of time, 
THEN try to find some extreme specializations of F. 

Eurisko explored several domains, including set theory, 
number theory, games, biological evolution, and the design 
of naval fleets. The latter is perha.ps of most relevance to 
our circuit design task Eurisko was given two hundred 
pages of rules and constraints on designing individual ships, 
plus a simulator which allowed it to determine which final 
fleet could beat which other fleets. It then designed fleet 
after fleet, using its simulator as the “natural selection” 
mechanism as it “evolved” bct,tcr and better fleet designs 
The search space-the number of parameters-was much too 
large for any sort of systematic (e.g., linear programming) 01 
even monte carlo approach to the problem to succeed 

For instance, when one fleet beat another, Eurisko had to 
analyze the differences between them, which usually meant, 
analyzing the differences between individual ships. Even 
once a single parameter appeared to be important (c.g , one 
fleet, was more heavily armored), experiments must be done 
(i.e., new designs made) to investigate the overall benefits of 
armoring. 

After a while, Eurisko also noticed another kind of 
regularity. For almost each parameter, the optimal value 
seemed to be almost, but not quite, an extreme value. This 
was formed into a heuristic rule that enabled Eurisko to very 
rapidly settle in on a winning fleet design. That new heuris- 
tic said 

IF designing either an individual ship or a fleet for 
Traveller TCS, and a certain parameter is having its 
value changed, 
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THEN change it to a nearly-but not quite-extremal 
value. 

The final fleet Eurisko designed had a large number of 
ships-each was fairly small, each had nearly as many types 
of weapons as allowed, each was nearly as heavily armored 
as possible, each was nearly as slow as possible, etc. 

Each evening during June 1981, Lenat would start 
Eurisko running on this task on one or more Xerox 1100 
(Dolphin) machines. All night it would try out new designs 
and occasionally new design rules and run simulated battles 
to evaluate them. In the morning, a quick glance over its new 
ideas would be in order to occasionally give an extra reward 
t,o one that Eurisko failed to appreciate fully. For example, 
one morning Lenat noticed a fleet that was decimated, ex- 
cept for a small lifeboat that could not be defeated because it 
had been designed with incredibly expensive computer COII- 

trols that enabled it to outmanuevcr all incoming fire. The 
significance of this was not fully appreciated by Eurisko, but 
we made sure to include one such small unhit,table craft in 
the final tournament fleet. On July 4, 1981, that fleet, won 
the nat,ional (Traveller TCS Origins) tournament by winning 
seven consecut,ive battles. Following the victory of Eurisko’s 
highly unconventional fleet, some of the rules were changed 
for this year’s tournament. In particular, repairing of ships 
is no longer permitted and this turns out to eliminate the 
usefulness of the small unhittable ship. 

Because the general design heuristics for Travellcr TCS 
are (probably) still valid, even with the changes in the rules, 
it, should take Eurisko much less t,ime to design a good 
fleet for this year’s competition. If it had not abstracted 
its experiences into heuristics, we would have had to start 
Eurisko all over again this year, slowly evolving a fiect design. 
There was a regional tournament in the Bay Area over 
Washington’s birthday in which a dozen rule changes were 
announced only a couple days before t,he event. Since the 
design heuristics were still valid, Eurisko did come up with a 
good design in two days and its fleet won that tournament,. 
One rule change was that victory is now tied to monetary 
damage, not ultimate survival Another rule change involved 
limiting the number of exchanges of fire to 40. Eurisko tried 
nearly-extreme designs and came up with a ship that in many 
ways is the opposite of its little lifeboat. This new ship is 
large, has huge weapons, but no defense whatsoever. Since 
there arc only forty rounds of fire allowed, one builds forty 
of these ships and puts one up each round. Yes, it gets sunk, 
but since most of one’s money goes for defenses in Traveller 
TCS, the monetary damage one inflicts on the enemy is great 
The rule changes had a great impact on the final designs, 
but little on the heuristics. Because it discovered a body of 
design rules, Eurisko became (in a small way) an expert, at 
designing Travcller TCS fleets. 

Research with Eurisko in various domains has estab- 
lished its abilit,y to learn simple judgmental rules by abstract- 
ing them from experience, by modifying existing rules, and 
occasionally by analogy to existing rules. This ability to dis- 
cover heuristics is crucial in our high-rise chip design task, 

where task-specific heuristics probably exist and are neces- 
sary for good performance, but are as yet, undiscovered by 
people. Another way of saying this is that WC are embarked 
on the task of creating an “expert syst,em” for a field in 
which there are as yet no human experts to copy from or 
learn from and that we propose to try doing this through 
Eurisko’s ability to discover useful heuristic expertise itself. 

The Opportunity: Using AI Methods 
to Search for New Microcircuit Structures 

With the above technological capabilities as background, 
in July 1981 we began to consider how to apply Al capabilities 
to the synthesis of novel microelectronic structures. Our 
basic approach has three simple and obvious steps: 

The program starts with some primitive microcir- 
cuit concepts as built-in knowledge along with simple 
rules and evaluation criteria. 

IJsing composition rules, it combines several known 
entities into a new one. In rare cases, a rule takes a 
single known entity and mutates it 

This new structure, rule, operation, etc is then 
evaluat,ed for interest and either retained or junked 
as appropriate 

The most common instance of action 2 is to take known 
primitive (or complex) microcircuits and produce new ones. 
More rarely, new heuristic rules are produced. Even more 
rarely, new evaluation criteria emerge. 

Within this strategic paradigm of design exploration, 
there are obviously many tactical choices (see Fig. 2). 

Finally, there is a battery of implewlentation-level tasks 
and decisions. Some of t,hese involve Al (e.g., exactly how is 
knowledge t,o be represented, what, control structure is used, 
what language or program is employed) and some involve 
microelectronics (e.g., exactly how will the designs he fabri- 
cated). 

The “opportunity” mentioned in the title to this sect,ion 
derives from the colocation and interest in collaboration of 
the creator of the Eurisko program (Lenat), the fahricat)or of 
the first few high-rise chips (Gibbons), and someone familiar 
with both fields (Sutherland). Thus, the implementation- 
level problems have precise answers The representation and 
control arc taken from Eurisko (frames and agendac), and 
the fabrication (including design of masks) is performed by 
Gibbons and his staff. By using the already extant Eurisko 
program, we were able to concentrate on knowledge ratliel 
than on programming and quickly obtain some results. We 
believed it, would be adequate for our task, as it, had already 
discovered concepts and design strategies in other domains. 

This article is a report on six months of part-t,ime ex- 
ploration of this opportunity by the three authors. During 
this time, we have tried several approaches to questions l-4, 
in Figure 2. The rest, of this article documents our efrorts 
to dat,e and what, we have learned as a result. Just trying 
t,o make some of the choices implied above has been most 
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1 What level of representation is appropriate for primitive microcircuit elements? 

2 What kinds of combining operations are needed given the primitive element representation chosen? 

3 How are new combinations of elements constructed (e.g., randomly or with some kind of common-sense knowledge about 
likely usefulness)? 

4. What are good criteria for evaluating a new complex structure to decide if this structure should be recorded as useful or 
thrown out as not good for anything? 

Figure 2 Tactical choices to be made in automatic exploration for microcircuit structures. 

illuminating. In our discussions and early program runs, we 
have invented important new structures and design heuristics 
and improved our understanding of the space of choices. 

Experiment 1: Eurisko Applied to 
Random Generation at the Carrier Level 

Our initial idea was to include knowledge about proper- 
ties of semiconductor regions such as doping, diffusion and 
drift, recombination, etc. Rules for synthesizing new devices 
would place different kinds of regions in contact and then in- 
teractions would be deduced. We had only some very general 
evaluation criteria in mind at this point. Gain, non-linearity 
frequency dependent behavior, etc., seemed like interesting 
properties that would make a new device promising cvcn bc- 
fore any specific application for it were known. 

This first “carrier level” of representation was largely ex- 
plored by hand. WC tried to sort out the primitive elements, 
rules, and evaluation methods tjhat, as a start, could generate 
and notice well known devices such as the Junction Diode, 
Bipolar Transistor, and MOSFET. Since we tailored our 
primitive components and operators on this basis, indeed, 
those well known devices wcrc short expressions easily found 

Name : SetClfAllDevices 

once we began running the Eurisko program. 

The representation we initially used at this carrier level 
quickly evolved as a result of Eurisko’s noticing useful im- 
provements. That is, the Eurisko program monitored how 
well the representation matched the processing that was 
going on, and made suggestions, from time to time, of 
ways in which that representation might be improved. Let, 
us consider an example of this. In the original repre- 
sentation we provided to Eurisko, each individual device was 
a unit (frame, Being, etc.) one of whose slots was called 
“Terminals." This slot was always so big (i.e., had, empiri- 
cally, so many entries) that eventually Eurisko finally decided 
to split it into pieces by defining two useful specializations of 
this slot-XMustBeInputTerminalsV and “XorInputTerminals” 
(a list of sets of terminals, such that for each set, one and 
only one element must be an input terminal). 

Below arc four concepts as they appeared in Eurisko. 
The first represents the set of all physical devices; the second 
is the archetype for an individual device; the third represents 
a particular individual device; the fourth represents a heuris- 
tic rule which takes thermal motion of carriers into account. 

ISA: 

Generalizations: (SetOfAllPhysicalDevicePhysicsObjects 
SetOfAllPhysicalObjects 
SetOfAllDevicePhysicsObjects 
SetOfAllDevicePhysicsConcepts 
SetOfAllComplexStructures 
SetOfAllComplexStructuresBuiltOutOfComplexStructures 
Anything) 
(AbstractDevicePhysicsObject 
DevicePhysicsConcept 
AbstractObject 
SetOfUnits 
Set 
Anything) 

InitialWorth: 500 
Worth: 800 
DomainOf: (Abut DAbut CopyDevice ApplyEField ApplyCEField) 
RangeOf: (Abut DAbut CopyDevice ApplyEField ApplyCEField) 
FocusTask: FocusOnDevices 
TypicalExample: TypicalDevice 
Examples: (TypicalDevice SimpleNRegionDevice SimplePRegionDevice) 
MyCreator: Lenat 
MyTimeOfCreation: "19-July-81 13:37:18" 
MyModeOfCreation: (Copy&Edit SetOfAllShips) 
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Name : 
ISA: 

InitialWorth: 
Worth: 
PartOf: 
Parts: 
SimulationHeuristics: 
FocusTask: 
MyTypicalExampleOf: 
MyCreator: 
MyTimeOfCreation: 
MyModeOfCreation: 

- 
TypicalDevice 
(SetOfAllPhysicalDevicePhysicsObjects 
SetOfAllPhysicalObjects 
SetOfAllDevicePhysicsObjects 
SetOfAllDevicePhysicsConcepts 
SetOfAllComplexStructures 
SetOfAllComplexStructuresBuiltOutOfComplexStructures 
Anything) 
500 
500 
Device 
(SolidStateMaterials EFields Devices) 
(~65 H66) 
FocusOnTypicalDevice 
SetOfAllDevices 
Lenat 
"19-July-81 13:40:55" 
(Eurisko suggested Copy&Edit TypicalShip) 

Name : 
ISA: 

InitialWorth: 
Worth: 
PartOf: 
Parts: 

SimulationHeuristics: 
Terminals: 
InputTerminals: 
XorInputTerminals: 
FocusTask: 
MyCreator: 
MyTimeOfCreation: 
MyModeOfCreation: 

Device-817 
(SetOfAllPhysicalDevicePhysicsObjects 
SetOfAllPhysicalObjects 
SetOfAllDevicePhysicsObjects 
SetOfAllDevicePhysicsConcepts 
SetOfAllComplexStructures 
SetOfAllComplexStructuresBuiltOutOfComplexStructures 
Anything) 
500 
600 
Device-809 
((SolidStateMaterials: NRegion-1953 PRegion-75 NRegion-1954) 
(EFields: EField-930 OrthogonalEField-18) 
(Devices: no subdevices)) 
(~65 H66) 
(NRegion-1953 NRegion-1954) 
NIL 
((NRegion-1953 NRegion-1954)) 
FocusOnDevice-817 
(Task-82 "Find examples of SetOfAllDevices") 
"25-July-81 16:02:29" 
(ApplyEField 
(ApplyOrthogonalEField 
(Abut NRegion PRegion NRegion))) - 

Name : H65 
ISA: (SimulationHeuristic 

Heuristic 
MultiValuedOp 
SideEffectsOp 
AbstractOp 
OP 
Anything) 

UsedInSimulating: (TypicalDevice) 
English: (If you are simulating a physical device, 

Then it's important to simulate the thermal meanderings 
of carriers in the solid state materials in the device) 

Abbrev: (If a device has solid state materials, 
Then simulate thermal motion of carriers) 

IfCurrentTaskIsToWorkOnA: PhysicalDevice 
IfCurrentTaskIsToPerformA: Simulation 



IfSimulating: 
IfPotentiallyRelevant: 

IfTrulyRelevant: 
ThenPrintToUser: 
ThenCompute: 

ThenAnalyze: 
ThenFillInEntries: 
Arity: 
Domain: 
Range: 
InitialWorth: 
Worth: 
Generalizations: 
MyCreator: 
MyTimeOfCreation: 
MyModeOfCreation: 
MyLastRunOn: 
MyThenComputeRecord: 

PhysicalDevice 
( X (dev) 
(Setq SpaceToUse 
(TheSubsetOf (Parts dev) 
(WhichAre 'SolidStateMaterials)))) 
(X (> (MoreThanlKindOfElement SpaceToUse)) 
Simulated the thermal motion of the carriers in d) 
<lisp code that finds the type of carrier for each 
region, computes the penetration depths into all 
neighboring regions > 
<lisp code that analyzes what occurs at each boundary> 
<lisp code that adds values to dev’s Behavior slot> 
I 
Task 
(Entries for (Behavior dev)) 
700 
750 
(TypicalOp TypicalHeuristic H60) 
Lenat 
"19-July-81 15:11:03" 
(Copy&Edit H6O) 
SimplePRegionDevice 
(12 successes, averaging 72 seconds each) 

MyThenComputeFailedRecord: (I failure, averaging 4 seconds each) 
MyThenPrintToUserRecord: (12 successes, averaging 9 seconds each) 
MyOverallRecord: (12 successes, averaging 89 seconds each) 
MyOverallFailedRecord: (I failure, averaging 16 seconds each) 

<a dozen other such record-keeping slots> 

Although this article is not focusing on representation of 
knowledge, let us briefly illustrate how new domain-specific 
kinds of slots arc generated by Eurisko We have already seen 
the usefulness of doing this kind of activity when Terminals 
was specialized to form two new slots, InputTerminals and 
XorInputTerminals 

In 1165, the IfPotentiallyRelevant slot used to contain 
an extra condition not shown above-a predicate testing 
whether or not the current task (the one chosen from the 
agenda) dealt with simulating a physical device. So many 
heuristics had IfPotentiallyRelevantslotswhosevalueswerc 
"test whether or not, the current, task deals with simulat- 
ing 37” that Eurisko decided to make that a new slot 
called Ifsimulating. So H65 now only has to have an If- 
Simulating slot with the value PhysicalDevice. 'I'he If- 
PotentiallyRelevant slot could now be shortened (and in 
many cases completely eliminated). Whenever it was needed 

( i.e., some rule interpreter asked for a heuristic’s Ifpoten- 
tiallyRelevant)an extratest would besynthesized automati- 
cally from that heuristic’s IfSimulating slot,. 

A second case of forming a new slot happened later 
when Eurisko noticed that,-in several domains, not just 
VLSI-many of the If- slots had constructions of the form 
(Setq SpaceToUse X1. It defined a new kind of slot, If- 
SearchSpaceCanBeComputed, that, is simply filled with X, and 
whose side effect is to bind the variable SpaceToUse to X. 

A third example of this process was when Eurisko noticed 
that many of these slots had values of the form (Subset 
(s d) (WhichAre ‘y)) The new slot, in this case, called If- 
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SubspaceCanBeComputed, is simply filled with the list (s y), 
in this case the list (Parts SolidStateMaterials) By this 
compact entry, the new H65 communicates t,hat it wants 
t,o assure that some parts of the device are solid st,atr 
materials, and assuming this to be the case, binds the vari- 
ahlc SpaceToUse to the set, of parts which are solid stat,c 
materials. 

Note how, as this process of defining new slots goes on, 
the heuristic gets a few extra slots, but the length of the 
entries goes down dramatically 

This focus on adding new kinds of slots is not a digres- 
sion, but rather the main new source of power that Eurisko 
uses AM worked because its representation-LISP predi- 
cates-was very natural for the concepts they represented 
characteristic functions for mathematics concepts. This was 
really a lucky accident due to John McCarthy deszgnzng LISP 
to bc a natural language for mat,hematics. Random muta- 
tions and compositions of the LISP code often resulted in 
code that, was the characteristic function of an interesting, 
useful mathematical concept. But LISP is not a natural lan- 
guage for representing heuristics. Encoded as large lumps 
of LISP code, almost any small change or combination is 
bound to be disastrous. Above we saw how Eurisko has 
evolved a natural, well-matched language for sta.ting heuris- 
tics compactly-a language that, facilitates their discovery 
and combination, something Conway and Stefik would call 
a syntheszs language. Their article in this issue of The Al 
Magazzne expands upon that idea 

Much of the knowlcdgr in H65 is embedded deeply within 



the Then- dok. This is somewhat unfortunate from the 
point of view of modifying H65 to get new heuristics. 
I-165 computes penetration depths, analyzes each interregion 
boundary, and decides where annihilation will occur, deple- 
tion layers form, etc All this is packed into two slots- 
ThenCompute and ThenAnalyze. One very general result from 
Eurisko’s work in other domains was that it is more impor- 
tant to finely categorize and partition the If- parts of a 
heuristic rule than the Then- parts. This appears to hold 
for our three-dimensional microelectronic circuit design task 
as well, as there was little urging to split the Then- slots in 
any way. This seems to be related to the fact that most 
of the new heuristics synthesized, both in this domain and 
in others Eurisko has worked on, have had modifications 
to If- parts-very few successful new heuristics have had 
modifications to Then- parts. It remains to be seen whether 
this is a phenomenon to be studied or a defect to be over- 
come. 

The main observations to make from the four units are: 

1. Concepts are represented as lists of attributes (slots) 
and associated values. This structuring allows rules 
to be very specific yet still remain brief. 

2. Some slots are prefaced My- to indicate that they 
refer to the unit as a data st,ruct,ure. This implc- 
mcnts the distinction bctwecn object- and mela-level 
knowledge. 

3 Heuristics are representled essentially the same way 
as all t,he other knowledge. This enables heuristics 
to apply to each other as well as to VLSI concepts. 

4. The conditions and actions of a heuristic are spread 
out over many slots. This enables new heuristics to 
be created as small variants of known ones. 

5. A great amount, of bookkeeping and recordkeeping is 
done. This enables later attempts at induction about. 
the knowledge and its use. 

6 Separate units are maintained for TheSetOfAllX’s, 
TypicalX, and each X This forces the builders and 
users of the system to avoid ambiguity. 

The basic control structure is that of best-first search. 
An agenda of tasks is maintained, with symbolic reasons 
supporting the plxusibilit,y of each task. One task looked 
something like t,hat below: 

Name : Task-2610 

At, each moment, Eurisko is working on the t,ask with 
the highest priority, which in turn is a number derivccl from 
the reasons supporting the task. To work on a task, Eurisko 
scans through its collection of heuristic rules, finds those 
which are relevant, and executes (obeys) them. During the 
execution of a heuristic, three types of actions can occur: 

1 new tasks can be proposed and added to the agenda, 
2. new concepts can be defined, and 
3. new values can be found and added to some slot of 

some unit. 

Although all three actions might occur many times for each 
task, for the task below (Task-2610) we would expect that 
sometime while working on Task-2610, during the execution 
of some heuristic H that was relevant to it, one of H’s actions 
would be to fill in some values for the I/OBehavior slot of the 
unit called Device-817. 

Some slots arc filled in when the unit is first created 
(e.g., Name, ISA, InitialWorth, Parts, MyCreator, MyTimeOf- 
Creation, etc.), some are filled in gra.dually and continuously 
as part of rccordkeeping (e g., MyOverallRecord), and some 
are filled in only during the execution of tasks that specifically 
call for finding those entries (e g., Examples, Specializa- 
tions). 

Experiment 2: Eurisko 
Systematic Generation 

Applied to 
at the Tile Level 

To extend Eurisko to discover physically novel devices 
(e.g., ones with nonlinear gain due to striped doping pat- 
terns), we would have to program the various equations 
involved~- -equations which are much more complex in form 
and usage than the trivial ones Eurisko employed, such as 
the one to compute the thickness of a depiction region. Ad- 
ditionally, we would have to extract and include into the 
knowledge base many heuristics for when and how to use the 
equations, what terms to ignore under what circumstances, 
etc. Doing this was beyond the scope of an initial explora- 
tion. Rather, we moved on to a higher level of functional 
abstraction 

We briefly considered a very abstract topological level of 
representation and rejected it as admitting too many inter- 
esting designs that could never be realized geomet,rically. 

ISA: (SimulationTask DevicePhysicsTask TaskToFind Task Anything) 
RunAs : ((Run 24, Task 180, Task 195) (Run 26, Task 14) 1 
English : “Find the I/O behavior of Device-817” 
UnitToWorkOn: Device-8i7 
SlotToWorkOn: I/OBehavior 
Priority: 743 
Reasons : ((Device-817 is taking up a lot of room so let’s see if it’s a loser) 

(Device-817 was recently created and we should gather data on it) 
(The I/OBehavior of Device-809 wanted this to be done)) 

OnAgenda : 
MyIsA: 
My.. .etc 

(DevicePhysics) 
(EuriskoUnit) 
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gate oxide gate oxide 

Figure 3 A simple MOS gate If the Metal tile is high, the 
two n-tiles are connected together electrically The “Metal” tile 

can be any conductor Thus, this gate might be drawn as a 

standard “red over green” transistor A similar gate exists with 

the metal tile below, rather than above, the n-c-n tiles Two 
other primitive gates exist, using p-c-p rather than n-c-n For 
them, conduction occurs if and only if the metal tile is low 

WC then settled upon an intermediate level we call the 
tzle model. A device is composed of a set of regions. The five 
types considered were n-doped, p-doped, channel, insulator, 
and metal. Each region is conceived as a tile and every tile in 
the device has the same size and shape For now, visualize 
a tile as being cubical. These tiles are then packed into 
three-dimensional arrays and each such array corresponds to 
a three-dimensional microcircuit 

The n- and p-tiles refer to negatively- and positively- 
doped substrate material. Channel tiles represent undoped 
substrate (i.e., more or less intrinsic channel material) which 
are by default presumed to be coated with gate oxide on both 
their top and bottom surfa.ces. Metal tiles represent not just 
t,rue metal, but any conductor at all (such as polysilicon) 
which can serve as a gate 

Constraints on the building of structures are few. Layers 
of semiconductor tiles (p, n, and c) alternate with metal 
la,yers (metal and insulator tiles). In slightly more det,ail, our 
first guess at the possible tiles in the metal layer were Solid- 
Metal, SolidInsulator, TopHalfMetal, and BottomHalfMetal. 
The half and half t,iles were used for providing electrical con- 
tacts across a substrate tile without, short,ing to it-that is, 
each ones serves as a miniature version of a wire. Other types 
of tiles were experimented with, such as CenterMetal and Cen- 
terrnsulator, MetalThread (i e., a vertical core of metal sur- 
rounded by insulator on all sides), and even diagonal metal. 
Finally, we decided t,o conceptualize each metal layer as if 
it were two separate, independent, layers one on top of the 
other. The only possible t,iles in each layer are Metal and 
Insulator. To get the effect of TopMetal, one places a metal 

tile over an insulator; to get aSolidMetal,one places ametal 
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tile over a metal tile; etc 
Since each channel tile is coated on both its top and 

bottom surfaces with a thin layer of gate oxide, an MOS gai,c 
is formed if a metal tile is placed above or below the channel 
tile, and two n- (or two p-) tiles flank t,hc channel tile (see 
Fig. 3). 

For electrical behavior, we used a swit,ch level model 
which connects source and drain tiles when the approprial,e 
gate control signal is present. In terms of tiles, the details 
are: 

IF you see n-c-n, with m above (or below) c, 
and m is “high,” 
THEN the two n tiles will bc conncctcd together 
electrically 

IF you see p-c-p, with m above (or below) c, 
and m is “low,” 
THEN the two p tiles will be connected together 
electrically 

These are somewhat, simplified; for cxamplc, in t,he first 
rule, we should also check that at least one of the n tiles is 
low. From t,he simulator’s point of view, this is not necessary, 
since if both n tiles are hzgh, that is equivalent, to theil 
being connected together electrically (i.e., there is only one 
idealized voltage level called “high”) 

Unlike purely topological models, a latt,ice of tiles cannot 
be stretched and twisted into unrealistic connectivities. The 
lattice retains enough geometric reality to permit exploring 
three-dimensional structures and expect them to be realiz- 
able and fabricatable in a straightforward manner. Yet the 
tilt model is simple-it avoids most of the det,ails that, hog 



Substrate Layer 

Metal Layer 

Substrate Layer 

Figure 4 A side view of a device designed by Eurisko that it claimed was 

a flip-flop The rightmost column was not provided by Eurisko explicitly, 
but rather was assumed to exist due to a programming bug in array bounds 

checking, a bug introduced by Eurisko “improving” itself 

down any fully authentic geometric model The tile model 
focuses on the neighbors of a region rather than the details 
of size, shape, orientation, how to fabricate it, etc. 

From another viewpoint, by changing from the carrier 
model to the tile model, we shifted the domain of exploration 
from an analysis of potentially interesting semiconductor 
configurations (interesting based on electrical characteristics 
such as nonlinearity) to an exploration of the combinatorial 
possibilities inherent in various arrangements of tiles in a 
lattice (such as recognizable functionality). 

Eurisko was able to handle this shift surprisingly easily. 
Within a week it was generating and examining arrays of 
t,iles. It soon became clear that we were very poor at visualiz- 
ing t,he various devices Eurisko came up wit,h. To aid us, we 
bought a collect,ion of 1” square, .25” thick ceramic shower 
tiles of various colors Employing them, we rea.lined why 
Eurisko was (wrongly) claiming the structure in Figure 4 
acted like a flip-flop 

Due to a programming bug (introduced by Eurisko, in- 
cidentally, in its attempts to modify its own code), Eurisko 
was not always checking its array bounds properly. It 
thought, that, the right neighbor of the rightmost column of 
tiles (in Fig. 4) was the leftmost column of tiles, and not only 
that but, with up-down invert,ed. This structure is const,ruc- 
tible in three-space, namely as the surface we call a Mobius 
strip. If one builds the device shown in Figure 4, holds it by 
t,hc ends, gives it, a half twist, and fuses the two ends together, 
the behavior of the device IS that, of a conventional flip-flop, 
as Eurisko claimed (see Fig. 5). Although it could be built, 
and although it does use significantly fewer regions than a 
standard memory cell, given present fabrication techniques 

it is not a cost-effective design for large-scale production. 
WC have already covered the answer to decision 1 from 

Figure 2, that is, the level of representation chosen. A? 
for 2, the combining operations are quite simple in the tile 
model-~ -one simply stacks up tiles into three-dimensional 
arrays. Combination translates to adjacency-two devices 
arc combined by pushing them next to each other. The 
combined device is more than the sum of its parts in three 
cases: 

1 Two metal tiles-one from each subdevice-happen 
to wind up touching. In this case, a new electrical 
connection has been made. 

2 A metal tile from one subdevice happens to wind up 
directly above or below a (oxide-coated) channel tile 
from the other subdevice and there are some doped 
tiles adjacent to the channel tile. 

3 Two doped tile+ one from each subdevice-happen 
t,o wind up touching If they are both of the same 
type, a new (low-grade) electrical connection is made; 
if they are of different types a junction diode is 
formed. 

The answer to 3, from Figure 2, is that the combination 
process was random-often one of the subdevices is a simple 
single tile. 

The answer to 4 is more involved. Question 4 asked how 
a synthesized device was evaluated. The steps involved here 
are as follows: 

First, a pass is made through the (unit. representing and 
describing the) device to find all regions that are electri- 
cally connected to each other permanently. This can 
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Figure 5 The circuit Eurisko thought the device in Figure 4 was equivalent to 

occur within a substrate layer (whenever two like-doped 
tiles are adjacent) or within a met,al layer (whenever two 
metal tiles are adjacent) or between two layers (whenever 
a metal tile is above or below a doped tile). By finding 
the transitive closure of such pairwise connectivities, the 
entire device is partitioned into electrically connected 
equivalence classes 

Second, a pass is made to find all the possible gat,es (MOS 
transistors) in the device. This occurs wherever a metal 
tile is above or below a channel tile and (at least) a pair of 
like-doped tiles are adjacent, to the channel tile. A rule 
checks to see if the regions (equivalence classes) which 
would be connected by this gate (were it “on”) are the 
same. If so, this gate will always be a NO-OP and, hence, 
can be ignored. 

Once the gates are known, the device can be partitioned 
by the equivalence relation “Might possibly be connected to, 
by gates ” Ideally, one input terminal will exist for each 
such region If more than one exists, a short might develop, 
so special care must be taken in those cases. Additional 
constraints are brought to bear. Finally, a set of all legal 
divisions of terminals into inputs and outputs is computed. 

For a given set of input terminals, all logical inputs 
are computed and simulated through the circuit. Situations 
involving “state” require more than one call on the simulator. 
At this point, (some of) the I/O behavior of the device is 
known. 
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The input/output behavior is then “parsed” into large1 
functional units already known by the system In the case of 
a device created from subdevices, t,his behavior will usually 
refer to at least some of those subdevices. The basic elements 
initially supplied were logical operators (such as AND), flip- 
flops, stack cells, light controllers, 7-segment decoders, and 
a large set of mathematical operations (such as factoring, 
squaring, unioning, etc.) that were available essentially “for 
free” as one of Eurisko’s earlier domains was elementary 
mathematics. There was also a remote possibility that the 
program would stumble onto a device whose behavior could 
most easily be explained in terms of some Traveller fleet 
battle operation, or some biological concept, etc., but this 
never occurred. 

Once the description of the device’s behavior is at as 
high a level as possible, it is evaluated by a set of heuristics. 
These check for such events as the following: 

1. computing the same function as X, but in less time 
or space or power; 

2 computing the same functions as X and Y, but in 
much less than the combined space; 

3. symmetry; et,c 

Thousands of hours of runs with this version of the pro- 
gram (over t,he course of about one month-yes, we were 
using multiple Dolphins) convinced us that the “hit rate” for 
good devices was below one in a billion and gave us a healthy 
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Figure 6 Side view of a gate augmented with a new metal tile 

to make it more symmetric 

respect for the size of the search space for even such small 
devices as 3 X 3 X 3 ones. 

Experiment 3: Eurisko Applied to 
Best-first Generation at the Tile Level 

Blindly searching for interesting microcircuit structures 
is combinatorially too explosive to be profitable for even 
very small devices. The solution was to remain true to 
our paradigm of rule-guided heuristic search-that is, find 
(eit,her manually or by having Eurisko discover them) some 
heuristics which could guide the program toward plausible 
new devices to consider. The legal move space was too 
large LO have merely zmplauszble prunzng heuristics-most 
of the generfition would have to be constrained by plauszble 
generation heuristics. For this experiment, Eurisko remained 
at the tile level, as described in the last section. 

As we are exploring completely new territory, it is “fair” 
to provide as much help as possible to the program Its 
final evaluation will be in t,erms of genuine new discoveries it 
motivated or made itself. With that in mind, we allowed 
Eurisko to use all the very general, domain-independent 
heuristics that it had accumulated from other domains. 
These included some strategies such as noticing trends and 
tendencies, augmenting structures to make them more sym- 
metric, examining extreme cases, etc. 

Previously, in the unguided search experiment, a new 
small (3 X 3 X 3) device was synthesized every .9 second. Now, 
with a hundred heuristics guiding the generation process, it 
took about 30 seconds to produce each device design. These 

times are for Xerox 1100’s (Dolphins) which currently run a 
version of Eurisko at approximately l/4 the speed of Eurisko 
on a DISC 2060. 

Despite the slowdown of 1.5 orders of magnitude, the 
frequency of valuable new devices rose from one in 10,000 to 
one in 10. In fact, six of the first t,wclve devices turned out 
to be exceptionally valuable. A symmetrizing heuristic was 
responsible for them. Let us see how they arose. 

In the very first case, the heuristic t,ook a highly valued 
known device-a gate-and tried to make it more sym- 
metric. If you look at the standard gate (Fig. 3), you 

can see the same obvious addition to make it more sym- 
metric, namely, add one metal tile below the channel tile (see 
Fig. 6). 

This symmetrized structure is quite important. It is an 
efficient way to compute OR, as the two doped regions will 
be at the same voltage level if either metal is high. (Recall 
that all Channel tiles are coated with gate oxide both above 
and below.) 

One of the next few devices to emerge was the same 
thing as the one depicted in Figure 6, but with p-doped 
semiconductor regions instead of n-dopcd. This is a compact 
way to compute NAND, as the doped regions are at the same 
level unless both metals are high. 

The very next device produced by the symmetry heuris- 
tic was the one presented in Figure 7 It is the other, slightly 
messier, way to symmetrize the g&e. 

This device is also quite importa.nt. It, has a single 
piece of metal controlling t,wo “poles.” Many circuits, fol 
example, inverters, employ two gates whose control signals 
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Figure 7 The second way Eurisko symmetrized a gate (side view) 

are tied t,ogether. In three-dimensional microcircuit design, 
both of these gates can be realized by the single device above, 
thereby saving an extra metal tile (for the second gate) not 
to mention several metal tiles which would have functioned 
like a wire comlecting the two metal gate tiles. 

The next device t,he heuristic produced was a slightly 
less-preferred symmetrizing, less highly rated because it used 
p as well as n tiles (see Fig. 8). 

This device turned out, to have a very interesting be- 
havior. When the metal is high, the two lower, n-doped 
regions are connected electrically; when the metal is low, 
the two upper, p-doped regions are connected This device 
did not surprise Gibbons at all, as he had independently 
come up with it earlier. It formed t,he building block for the 
first high-rise chip ever produced, his one-gate-wide CMOS 
inverter (Gibbons and Lee, 1980). When the input signal A 
is high, the lower (n-doped) regions are connected, so the 
rightmost n-doped region is 0 (low). But the rightmost n- 

and p-doped tiles are both joined by a metal tile that is also 
taken to be the out,put, so in this case the output is low. 
Similarly, if the input A is low, a charmel forms across the 
top and the output is high 

The next device produced by the symmetry heuristic was 
similar in mat,erials to the one above, but it was a horizontal 
arrangement of them. Figure 9 provides a view of the device. 

When the metal is high, the two n-doped tiles are con- 
nected; when it is low, the two p-doped tiles are connected. 
Note how this exploits the intrinsic nature of the central 
channel tile capable of supporting a current of electrons or 
of holes. 

The next few symmetrizings were uninteresting The 
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twelfth one took the design from Figure 9 and added a gate 
underneath it, t,hus making it more symmetric. This new 
device, which we call the JMOS cross, is the building h1oc.k of 
our current designs, a new design technology we call XMOS 
(pronounced “cross-moss”). As shown in Figure 10, it can bc 
used to compute both NAND and OR simultaneously and it 
tesselates three space (it packs side to side and also on top 
of each other), so t,hat in t,he long run we get these functions 
at a cost of just one metal tile, one channel tile, one n-doped 
tile, and one p-doped tile. It was extremely unintuitive that, 
this could possibly be done at all before we saw this design 
By not fixing two of the input,s t,o be 1, as we do in Figure 10, 
more complex conditional expressions can be computed by 
these devices. 

Conclusions 

One important choice for the VLSI design task is the level 
of abstraction employed. The charge model needs a lot of 
mathematical back-up to deal with the electrical properties 
of t,he component interactions. This model operates rela- 
tively closely to natural phenomena with little abstraction 
The tile model, in contrast, retains enough geometrical 
detail to keep us honest with respect to fabrication con- 
straints along with enough electrical det,ail to determine 
functional utility It ignores enough detail that thousands 
of carrier-model-level devices map int,o the same t,ile-model- 
level device. But even this is not sufficient in and of it- 
self to allow random or systemat,ic search to be fruitful 
A few heuristics had to be added to guide the search fo‘ol 
plausible devices. Of thy csc, a symmetrizing heuristic had 
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Figure 8 The third way Eurisko symmetrized a gate (side view) The electrical connections shown turn 

it into a one-gate wide inverter The two metal tiles are not touching each other 

Figure 9 The fourth symmetrizing (side view) The metal tile 

is laid on top of, and obscures, the Channel tile Either the two 
n-tiles or the two p-tiles will be electrically connected, depending 

on whether the metal tile is (respectively) high or low 
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Figure 10 A fifth symmetrizing, related to Figure 9’s but with an 

extra piece of metal added In the center of the device is a Channel 

tile (almost completely obscured in the figure) The Channel tile lies in 
the same plane as the four doped tiles 

great success-half of its first dozen suggestions turned out 
to be valuable new devices. In a next try, we will probably 
try to merge the best features of both the charged carrier and 
the tile models, perhaps in a sequential way (i.e., worry more 
carefully about, electrical details once an interesting lattice 
arrangement is found) 

The operation of the Eurisko program was satisfactory 
In this new field, we were able to enter the knowledge for the 
t,wo different models relatively easily. The existing learning 
heuristics remained applicable. One of the conclusions from 
earlier research on Eurisko was the import,ance of gcncrat,- 
ing new, task-specific kinds of slots, as well as new heuris- 
tics. This turned out to be true for the VLSI design task as 
well, and in this article we have .illustrated several cases of 
automatic and semi-automatic defining of new slot types. 

Although it was expected, the futility of exhaustive 
search --even at “the right level”-was strongly reinforced 
WC do not, yet have a satisfact,ory understanding of ap- 
propriate construction heuristics which provide a reasonable 
hit rate on useful structures. Even our initial attempts at, 
such heuristics paid off handsomely, however, so we are en- 
couraged to cont,inue our investigation. 

The discipline of thought required of us in trying this 
comput,er applicat,ion was extremely valuable. In such a 
new unexplored field, the organization of our thoughts into 
a computer-digestible form led us by hand to the discovery 
of several new devices and device possibilities which we shall 
not catalog in this article One example of this was the not,ion 
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of doping a region only half-way down, thereby leading to a 
new kind of precharging of devices provided they are not 
retriggered too quickly. 

,Just the act of representing knowledge in Eurisko oc- 
casionally provided us with novel insights. The use of an 
array-like data structure led to the notion of a circuit as a 
lattice of regions (of a few t,ypes), ra.ther than the conveIl- 
tional decomposition of it into small devices hooked togethel 
by wires Some of Eurisko’s designs do have several metal 

regions in a row, acting like a wire, but most of its useful 
devices have few if any of these chains, and where they do 

exit they are short and (most, of) those metal regions serve a 
dual purpose such as acting as a gate. 

There is no need t,o restrict ourselves to cubic tiles, OI 

any sort of rectangular prismatic regions, of course. Going 
to fish-and-gccsc might hc a bit, t,oo fa.r, however C:urrent,ly 
Eurisko tesselates space with cylinders whose cross-section is 
hexagonal. One problem with this is the difficulty obtaining 
bathroom tiles with that shape, so it is hard to visualize 
the designs Eurisko comes up with This is not a purely 
whimsical dificult,y Seeing a set of designs, one for each 
plane, spread out on a flat screen, makes it, arduous to trace 
functionality. Some of this problem goes away by having 
Eurisko describe what is going on at higher and higher levels 
of functional abstraction. IJnfortunately, by the time it, can 
do this for any given design, it is usually ready to move on 

to the next one What was needed was a more nat,ural was 
to visualize the 3-D structures. 



To provide that power, we have equipped a doubly-wide 
Dolphin display screen with a stereoscopic viewer so we can 
literally see the structure Eurisko is considering at each 
moment. We considered various methods for 3-D viewing 
including varifocal mirrors, expensive optical image-fusing 
setups, oscilla.tor-driven polarizing goggles, etc., and finally 
found we could get by with an inexpensive fusion device-a 
first-surface mirror held vertically near the bridge of one’s 
nose Six other Ylat” windows on the Dolphin screen dis- 
play further information to the user-the state of Eurisko’s 
agendae, details of the current task and why it was chosen, 
details of the current concept(s) being worked on, the heuris- 
tics being applied to further the current task, etc. 

We were also able to assess t,he expertise needed to do 
the job. This expert,ise is quite wide ranging and includes 
knowledge about geometry, semiconductor electronics, and 
fabrication processing. 

The most important conclusion is that there are indeed 
many unintuitive, simple, yet powerful device designs lying 
“near the surface” in the space of three-dimensional microcir- 
cuits Heuristics which suggest plausible changes and com- 
binations appear to be necessary and sufficient to economi- 
cally find such devices Eurisko appears to be a promising 
vehicle for exploring this space as it can find such heuristics, 
even t,hough they may be counterintuitive to human beings. 

Future Directions 

Our efforts to date have reinforced our initial opinions 
that this is a fruitful area of application of AI. We have 
barely scratched the surface and considering the small effort 
expended believe there is much paydirt to be mined. We offer 
no claims that we have found the right level of representation 
or abstraction yet. It is clear that much more exploration by 
many more people will he required. In fact, it is likely that 
the interplay of viewpoints from different a.pproaches will be 
most productive. One such effort is described in Stefik and 
Conway’s article elsewhere in this issue. 

We certainly hope to see other levels of representation 
and abstraction explored. Building an expert system with t,he 
knowledge and mathematics needed for dealing with semi- 
conductor properties at an electron/hole level is one clear 
direction for future work That is, extending Experiment 1 
could be profitSable. 

Another promising direction is to incorporate more 
knowledge about fabrication processes and equipment. As 
mentioned before, the computerization of fabrication equip- 
ment is making fabrication knowledge and parameters more 
precise. Additionally, computer controlled equipment could 
directly use processing commands derived from a knowledgc- 
based process design system. Such a related application of 
process design as opposed to device design will require a 
solid knowledge base of semiconductor and related material 
properties. To give one simple example, a device may be 
no faster, use no less power, etc. than an old design, yet be 
highly prized because it requires fewer masks to produce. 

The novel feature of an AI system working in an emerg- 
ing field alongside people who are just learning their expertise 
deserves careful scrutiny. Trying to do this in another quite 
unrelated field could provide valuable insight about heuris- 
tics for learning. 

We note again that the traditional paradigm for micro- 
electronics is design, fabrication, and test. These three 
steps are performed serially-one is completed before the 
next begins. It is now becoming possible to merge these 
three. Computer systems process the design data, cont,rol 
the fabrication, and run the tests. By coordinating the pro- 
grams that do these activities, a real and new integration 
of the microelectronic construction process is possible. Our 
little exploration has helped to convince us of this poten- 
tial. We discussed in the article the possibility of fabricating 
with the power on, testing (each pa.rt, of) each layer as it is 
deposited. Low yield regions might cause rapid redesign of 
the rest of that layer In exceptional cases the entire layer 
could be evaporated and tried over again. “Backup” would 
finally have been pushed not merely to the hardware level, 
but to the level of fabrication of hardware! 

Our final remark is a strategic one on the possibility 
of major industrial or national impact if this AI application 
can be successfully pursued. As we enter the era of VLSI 

technology, there are shortages of critical people, an explo- 
sion of design complexity, and increasingly aggra,vating test 
requirements, to name only a few of the problems hinder- 
ing the field. The advent of three-dimensional VIST t,echnol- 
ogy explodes t,he magnitude of all of those problems. Any 
industrial firm or nation which could successfully devote a 
large number of computation cycles on a sustained basis to 
intelligent exploration of microelectronic design, fabrication, 
and test possibilities would certainly be ahead. We enjoy the 
dream. 
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