
Answer set programming (ASP) is a prominent knowl-
edge representation paradigm that found numerous
successful industrial and scientific applications includ-

ing product configuration, decision support systems for space
shuttle flight controllers, large-scale biological network
repairs, and team building and scheduling (see Erdem, Gel-
fond, and Leone [2016] for more details). The success story of
ASP is largely due to its modeling language and the availabil-
ity of efficient and effective answer set programming tools
that encompass grounders, solvers, and engineering envi-
ronments. Syntactically, simple answer set programs (or ASP
programs) look like Prolog logic programs. Yet solutions to
such programs are represented in ASP by sets of atoms called
answer sets, and not by substitutions, as in Prolog. An answer
set system typically consists of two tools, a grounder and a
solver, and is used to compute answer sets. Since 2007, the
series of ASP competitions has promoted the collection of
challenging benchmarks as well as supplied researchers with
a uniform platform for tracking the progress in the develop-
ment of ASP solving technologies. More recent introduction
of programming environments eased the development of
ASP programs and the implementation of software systems
based on ASP. In this article, we present a brief survey of (1)
existing answer set grounders and solvers, (2) engineering
tools and environments that support production of ASP-

Articles

FALL 2016 45Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Systems, Engineering
Environments, and

Competitions

Yuliya Lierler, Marco Maratea, Francesco Ricca

� The goal of this article is threefold.
First, we trace the history of the devel-
opment of answer set solvers, by
accounting for more than a dozen of
them. Second, we discuss development
tools and environments that facilitate
the use of answer set programming tech-
nology in practical applications. Last,
we present the evolution of the answer
set programming competitions, prime
venues for tracking advances in answer
set solving technology.

based applications, and (3) ASP competitions. Our
goal is to provide an interested reader with an out-
look on existing ASP technologies together with suf-
ficient literature pointers rather than in-depth expla-
nation of research and engineering ideas behind
these technologies.

ASP Grounders and Solvers
In ASP, solutions to logic programs are represented by
sets of atoms called answer sets (stable models) (Gel-
fond and Lifschitz 1988). Answer set solvers, such as
Smodels (Simons, Niemelä, and Soininen 2002),
Smodelscc (Ward and Schlipf 2004), and DLV (Leone
et al. 2006), to name some of the first implementa-
tions, compute answer sets of a given propositional
logic program. Conceptually, most answer set solvers
have a lot in common with satisfiability solvers (or
SAT solvers), systems that compute satisfying assign-
ments for propositional formulas in clausal normal
form. Tools called grounders complement answer set
solvers. A grounder is a software system that takes a
logic program with variables as its input and pro-
duces a propositional program as its output so that
the resulting propositional program has the same
answer sets as the input program. Propositional pro-
grams are crucial in devising efficient solving proce-
dures, yet it is the logic programming language with
variables that facilitates modeling and effective prob-
lem solving in ASP.

There are three main grounders available for ASP
practitioners: Lparse (Syrjänen 2001), DLV-grounder
(Leone et al. 2006), and GrinGo (Gebser, Schaub, and
Thiele 2007). Grounders Lparse and GrinGo are
stand-alone tools that are commonly used as front
ends for distinct answer set solvers. System DLV
encapsulates both a grounder and a solver. However,
calling the system with an option –instantiate pro-
duces propositional (ground) program for the given
input and exits the computation without accessing
the solving procedure of the system.

“Native” answer set solvers such as Smodels,
Smodelscc, and DLV are based on specialized search
procedures in the spirit of the classic backtrack-search
Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm. The DPLL algorithm and its modifications are
at the core of the majority of modern SAT solvers.
This algorithm consists of performing three basic
operations: decision, unit propagate, and backtrack.
The unit propagate operation is based on a simple
inference rule in propositional logic that given a for-
mula F in clausal normal form allows utilization of
knowledge about unit clauses occurring in F or being
inferred so far by the DPLL procedure in order to con-
clude new inferences. Native answer set solvers
replace the unit propagate operation of DPLL by spe-
cialized operations based on inference rules suitable
in the context of logic programs. For example, Smod-
els implements five propagators called Unit Propa-

gate, All Rules Canceled, Backchain True, Backchain
False, and Unfounded (for details on these propagators
see, for instance, Lierler and Truszczyński [2011]). In
DLV the basic chronological backtrack-search was
improved introducing backjumping and look-back
heuristics (Maratea et al. 2008). Solver Smodelscc
extends the algorithm of Smodels by conflict-driven
backjumping and clause learning. Clause learning is
an advanced solving technique that originated in
SAT and proved to be powerful. The distinguishing
feature about the answer set solver DLV is its ability
to handle disjunctive answer set programs. In rules of
such programs a disjunction of atoms in place of a
single atom is allowed in the heads. The problem of
deciding whether a disjunctive program has an
answer set is ΣP

2-complete. The other systems capable
of dealing with such programs are GNT, Cmodels,
claspD, and WASP. Brochenin, Lierler, and Maratea
(2014) survey the key features of disjunctive answer
set solvers.

Answer sets of a “tight” logic program are in a one-
to-one correspondence with models of completion, a
propositional logic formula proposed by Clark
(1977). This observation immediately leads to an idea
that answer sets of a tight logic program can be found
by running a SAT solver on clausified program’s com-
pletion. Tightness is a simple syntactic condition that
many interesting ASP applications satisfy. An incep-
tion of a SAT-based answer set solver Cmodels
(Giunchiglia, Lierler, and Maratea 2006) is due to this
fact. It starts its computation by forming completion
of an input program. Then Cmodels calls a SAT solver
for enumerating models of program’s completion.
Lin and Zhao (2004) proposed a concept of loop for-
mula so that given a program, extending its comple-
tion by its loop formulas results in a propositional
formula, whose models are in a one-to-one corre-
spondence with answer sets. In general case, the
number of loop formulas can be exponentially larger
than the size of a program. Nevertheless, solvers
ASSAT (Lin and Zhao 2004) and Cmodels found
means to utilize the concept of a loop formula in
order to compute answer sets of a program. This com-
putation typically requires multiple interactions with
a SAT solver. Loop formulas are related to so called
unfounded sets, which is the basis behind Unfound-
ed propagator often employed in answer set solvers.
Both ASSAT and Cmodels take advantage of conflict-
driven backjumping and clause learning available in
SAT technology that they rely on.

Answer set solver clasp (Gebser, Kaufmann, and
Schaub 2012a) borrows the ideas from both native
and “loop formula”–based solvers. Just as Cmodels or
ASSAT, it starts its computation by forming the
clausified completion of an input program. Next it
implements a search procedure that relies on a unit
propagator stemming from SAT on the program’s
completion and an Unfounded propagator stemming
from native answer set solvers. System clasp imple-

Articles

46 AI MAGAZINE

Articles

FALL 2016 47

ments conflict-driven backjumping and clause learn-
ing. The PC(ID)/answer set solvers MINISAT(ID) (Wit-
tocx, Marïen, and Denecker 2008) and WASP
(Alviano et al. 2015; Alviano and Dodaro 2016) share
a lot in common with the design of clasp. Lierler and
Truszczyński (2011) present a study that draws paral-
lels between several answer set solvers.

System LP2SAT (Janhunen 2006) represents a fam-
ily of “translation-based” solvers. This family relies on
a translation of propositional logic programs into log-
ic formulas so that models of the resulting formula are
in one-to-one correspondence with the answer sets of
the input program. This translation may add auxiliary
atoms in the process and may include the normaliza-
tion of aggregates as well as the encoding of level
mappings for nontight problem instances. The latter
can be expressed in different terms including acyclic-
ity checking. Pseudo-Boolean and SAT formulations
resulted in a variety of systems, such as LP2ACY-
CASP+CLASP, LP2ACYCPB+CLASP, LP2ACYCSAT
+CLASP, and LP2ACYCSAT+GLUCOSE. Systems
LP2DIFFZ3 and LP2DIFF+YICES utilize satisfiability
modulo theory solvers (Nieuwenhuis, Oliveras, and
Tinelli 2006) through a translation from logic pro-

grams to difference logic. Among other alternatives,
solver LP2MIP relies on a translation into a mixed
integer programming problem, and runs CPLEX as
back-end, while LP2NORMAL+CLASP normalizes
aggregates (of small to medium size) and uses clasp as
a back-end ASP solver.

ASP systems have been also extended to exploit
multicore and multiprocessor machines by introduc-
ing parallel evaluation methods. In particular, paral-
lel techniques for the instantiation of programs were
proposed as extensions of the Lparse (Pontelli, Bal-
duccini, and Bermudez 2003) and DLV (Perri, Ricca,
and Sirianni 2013) grounders. Recent approaches for
extending the algorithm of clasp include that of Geb-
ser, Kaufmann, and Schaub (2012b).

Automated algorithm selection techniques have
been employed in ASP for obtaining solvers perform-
ing well across a wide heterogeneous set of inputs.
The idea is to leverage a number of efficient imple-
mentations (or heuristically different variants of
these) and apply machine-learning techniques for
learning from a training set how to choose the “best”
solver for an input program. System CLASPFOLIO
(Gebser et al. 2011) combines variants of clasp, and is

Figure 1. The User Interface of ASPIDE. hh ff ff

a representative of portfolio solving in ASP. System
ME-ASP (Maratea, Pulina, and Ricca 2014), instead,
implements a multiengine portfolio ASP solver, by
combining several solvers. The adoption of the ASP-
CORE-2 standard input language2 allowed the appli-
cation of algorithm selection techniques also to the
grounding step.

Constraint answer set programming is a recent
direction of research that attempts to combine
advances in answer set programming with these in
constraint processing. This new area has already
demonstrated promising results, including the devel-
opment of the solvers ACSOLVER, CLINGCON, EZC-
SP, IDP, and MINGO. Lierler (2014) surveys the key
features of constraint answer set programming lan-
guages and systems. This direction of research is
inspired by the advances in the related field of satis-
fiability modulo theories.

Engineering Environments
The availability of efficient solvers makes ASP a valu-
able tool for many computationally intensive real-
world applications. Effective large-scale software
engineering requires infrastructure that includes
advanced editors, debuggers, etc. These tools are usu-
ally collected in integrated development environ-
ments (IDE) that ease the accomplishment of various
programming tasks by both novice and skilled soft-
ware developers. The development of application
programming interfaces (APIs) is also essential for
allowing ASP-based solutions within large software
frameworks common in the modern, highly techno-
logical world. The following subsections present an
overview of both the IDEs for writing ASP programs
and the available APIs for building full-fledged soft-
ware systems based on ASP.

Development Environments for ASP
Several tools have been proposed in the last few years
that aim at solving specific tasks arising during the
development of ASP programs, including specialized
editors, debuggers, testing tools, and visual program-
ming tools. The IDEs that collect several tools in the
same framework are also now available. SeaLion
(Busoniu et al. 2013) is the first environment offering
debugging for programs with variables. It also fea-
tures unique tools for model-based engineering
(using ER diagrams to model domains of answer set
programs), testing through annotations, and bidirec-
tional visualization of interpretations. The ASPIDE
IDE (Febbraro, Reale, and Ricca 2011) is a compre-
hensive framework that integrates several tools for
advanced program composition and execution. To
provide an overview of insides of ASP IDEs we briefly
outline key features of ASPIDE.

A snapshot of the user interface of ASPIDE is
reported in figure 1. Logic programs are organized in
projects collected in a workspace (displayed in the

left panel in figure 1). The main editor for ASP pro-
grams (central frame in figure 1) offers code line
numbering, find/replace, undo/redo, copy/paste, col-
oring of keywords, dynamic highlighting of predicate
names, variables, strings, and comments. The editor
is able to complete (on request) predicate names
(learned while reading from the files belonging to the
same project), as well as variable names (suggested by
taking into account the rule one is currently writing).
Programs can be modified in an assisted way, for
instance, by considering bindings of variables, or by
applying custom rewritings (that can be user
defined). Syntax errors and some syntactic conditions
(for instance, safety) are checked while writing and
promptly outlined. ASPIDE suggests quick fixes that
can be applied (on request) by automatically chang-
ing the affected part of code. Common programming
patterns (such as guessing with disjunctive rules and
specific constraints) are available as code templates
that are expanded as rules (again on request). An out-
line view (left frame in figure 1) graphically repre-
sents program elements for quick access to the corre-
sponding definition. Users accustomed to graphic
programming environments can draw logic programs
by exploiting a QBE-like tool for building logic rules
(Febbraro, Reale, and Ricca 2010). The user can
switch from the text editor to the visual one (and vice
versa) thanks to a reverse-engineering mechanism
from text to graphical format. The execution of ASP
programs is fully customizable through a number of
shortcuts, including toolbar buttons and drop-down
menus, for a quick execution of files. The results are
presented to the user in a view combining tabular
representation of predicates and a treelike represen-
tation of answer sets. ASPIDE supports test-driven
software development in the style of JUnit (see more
details in Febbraro et al. [2011]).

Program development is enhanced in ASPIDE by
additional tools such as the dependency graph visu-
alizer, designed to inspect predicate dependencies
and browsing the program; the debugger to find bugs
(Dodaro et al. 2015); the DLV profiler; the ARVis com-
parator of answer sets; the answer set visualizer IDP-
Draw; and the data source plug-in that simplifies the
connection to external DBMSs through JDBC.
Notably, ASPIDE is an extensible environment that
can be extended by users providing new plug-ins that
support (1) new input formats, (2) new program
rewritings, and even (3) customization of the visual-
ization/output format of solver results. System ASPI-
DE is written in Java and is available for all the major
operating systems, including Linux, Mac OS, and
Windows.1

Building Full-Fledged
Applications with ASP
IDEs for ASP provide clear advantages for logic pro-
grammers, but are not enough to enable assisted
development of full-fledged industry-level applica-

Articles

48 AI MAGAZINE

tions (Grasso et al. 2011, Ricca et al. 2012). ASP is not
a full general-purpose language. Thus, ASP programs
are eventually embedded in software components
developed in imperative/object-oriented program-
ming languages.

The development of APIs, which offer methods for
interacting with an ASP system from an embedding
program, is a necessary step in accommodating the
use of ASP-based solutions within large software sys-
tems. Among the first proposals was the DLV Wrap-
per, a library that allows embedding ASP programs
and controlling the execution of the DLV system
from a Java program, and the ONTODLV API, a rich-
er API that allows embedding ontologies and reason-
ing modules developed using the ONTODLP lan-
guage (Ricca et al. 2009). More recently, the Potassco
group from the University of Potsdam supported the
embedding of ASP in Python and Lua programs using
GrinGo and clasp. These interfaces provide a finer-
grained access to grounder and solver functionality,
and also allow incremental solving.

In APIs, however, the burden of the integration
between ASP and Java is still in the hands of the pro-
grammer, who must take care of the (often repetitive
and) time-consuming development of scaffolding
code that executes the ASP system and gets data back
and forth from logic-based to imperative representa-
tions.

These observations inspired the development of a
hybrid language, called JASP (Febbraro et al. 2012),
that transparently supports a bilateral interaction
between ASP and Java. JASP introduces minimal syn-
tax extensions both to Java and ASP. Its specifications
are both easy to learn by programmers and easy to
integrate with other existing Java technologies. The
programmer can simply embed ASP code in a Java
program without caring about the interaction with
the underlying ASP system. An “ASP program” can
access Java variables, and the answer sets that result
from the execution of the ASP code are automatical-
ly stored in Java objects, possibly populating Java col-
lections, in a transparent way. A distinctive feature of
JASP is the clean separation between the two inte-
grated programming paradigms interacting through
a standard object-relational mapping (ORM) inter-
face. JASP supports both (1) a default mapping strat-
egy, which fits the most common programmers’
requirements, and (2) custom ORM strategies, which
can be specified according to the Java Persistence API
(JPA) to perfectly suit enterprise application develop-
ment standards. The framework also encompasses an
implementation of JASP as a plug-in for the Eclipse
platform, called JDLV.

Another hybrid language combining Java and ASP
was proposed by Oetsch, Pührer, and Tompits (2011),
which employs a radically different strategy for the
interaction with Java. For instance, Java methods
including constructors can be called by exploiting
special atoms in ASP rules.

The ASP Competition Series
ASP competitions are the events of the ASP commu-
nity, where ASP solvers are evaluated for efficiency.
Since 2007, they take place biennially and are affili-
ated with the International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR);
the exception was the fifth event that took place in
2014, affiliated with the 30th International Confer-
ence on Logic Programming (ICLP). In this section
we present the history and evolution, in terms of for-
mat, solvers participation, and winners, of the ASP
competition series, by first summarizing the editions
up to the fourth edition, and then focusing on the
2014 and 2015 events.

ASP Competitions up to 2013
In September 2002, participants of the Dagstuhl Sem-
inar on Nonmonotonic Reasoning, Answer Set Pro-
gramming, and Constraints (Brewka et al. 2002)
agreed that standardization was one of the key issues
for the development of ASP. This led to the the ini-
tiative to establish an infrastructure for benchmark-
ing ASP solvers, as already in use in related research
fields of SAT and constraint programming. The first
informal competition took place during that work-
shop in Dagstuhl, featuring five systems, namely
DLV, Smodels, ASSAT, Cmodels, and ASPPS. The sec-
ond informal edition took place in 2005, during
another Dagstuhl meeting. Since then, the ASP com-
petitions have been established as reference events
for the community.

The First ASP Competition (Gebser et al. 2007) was
organized in Potsdam with two main goals. The first
goal was to collect benchmarks. It was achieved
through a call for benchmarks to members of the
community. The second goal was to set up a fair com-
petition environment. In the competition, only deci-
sion problems were considered. There were three cat-
egories of benchmarks involved: (1) MGS (modeling,
grounding, solving), where benchmarks were speci-
fied by a problem statement, a set of instances, and
the names of the predicates and their arguments to
be used by programmers to encode solutions; (2)
SCORE (solver, core language), where benchmarks
consisted of ground normal and disjunctive pro-
grams in the format common to DLV and Lparse; and
(3) SLparse (solver, Lparse language), where bench-
marks consisted of ground programs in Lparse format
with aggregates.

Ten ASP solvers participated, with several new
solvers compared to the first informal events, name-
ly ASPER, clasp, NOMORE, GNT, LP2SAT, and
PBMODELS, thus establishing the advent of CDCL
solvers and solvers based on eager translation-based
approaches to ASP solving. Solvers were ranked in
terms of number of solved instances: DLV won the
MGS and SCORE categories, while clasp was the best
solver on the SLparse category.

The Second ASP Competition (Denecker et al.

Articles

FALL 2016 49

2009) was organized by Katholieke Universiteit
Leuve. Differently from the precursor event, it was a
model and solve team competition: A number of
well-specified benchmarks (collected, again, through
a call for benchmarks, and divided into categories
based on complexity) had to be modeled by the par-
ticipant teams and solved with a system of their
choice. Moreover, optimization problems were intro-
duced in the runnings. Sixteen solvers entered the
competition: among others, IDP and approaches
based on compilation into SMT participated for the
first time. The Potassco team (Potsdam University)
won the overall competition, and performed best on
both decision and optimization problems.

In the 2011 and 2013 editions, the format consist-
ed of two different tracks: a model and solve and a
system track. The former was the continuation of the
Second ASP Competition tradition, while the later
was in spirit of the First ASP Competition, which
aimed at fostering language standardization and at
allowing participants to compete on given encodings
under fixed conditions. Both tracks featured a select-
ed suite of domains, chosen again by means of an
open call for the benchmarks stage, and organized in
classes based on complexity.

The Third ASP Competition (Calimeri, Ianni, and
Ricca 2014) was organized by the University of Cal-
abria. Eleven systems participated in the system
track, among them the first portfolio answer set
solver, CLASPFOLIO, and a number of translation-
based solvers. Six teams entered the model and solve
track, including the Fast Downward team from the
planning community. Winners were determined
with a scoring computed by the number of solved
instances and the CPU time, plus the quality of the
solution in case of optimization problems: claspD
won the system track, while the Potassco team won
the model and solve track. The portfolio solver
CLASPFOLIO was the best system on the NP class,
which included NP-complete problems and any
problem in NP not known to be polynomially solv-
able.

The Fourth ASP Competition (Alviano et al. 2013)
was jointly organized by TU Vienna and the Univer-
sity of Calabria. The design of the event was similar
to the previous edition, with some important
changes. The competition introduced the standard
input language ASP-CORE-2.02 for the system track
(an evolution of the ASP-CORE language proposed in
2011); exceptions were made and problem encodings
in legacy formats were still admitted. Also a system
track for parallel systems was introduced. Sixteen
solvers entered the system track: most of these
solvers participated in the earlier editions, with the
notable exception of the WASP solver. Seven teams
entered the model and solve track. About the results:
claspD and its parallel version claspD-MT (Potsdam
University) won the system track, while the Potassco
team was the winner of the model and solve track.

The Fifth and Sixth ASP Competitions
The fifth and the sixth editions of the ASP competi-
tion series introduced significant modifications to the
trend. We first outline the main changes, and then
we speak of the two events separately.

The model and solve track was no longer an inte-
gral part of the events. Rather, it was organized as an
(informal) on-site event. The reasons for this are that,
first, organizing, and even more participating in,
such a track requires a substantial amount of work.
In addition, the participation from neighboring
research communities was rather limited, probably
due to the presence of competitions in the related
research communities and the nonnegligible effort of
participating. The first on-site event, called ASP Mod-
eling Competition 2014, saw five participating teams.
Each team was formed by three researchers and was
allocated a fixed amount of time for solving a few
problems.

The Fifth Answer Set Programming Competition
(Calimeri et al. 2016) broke the usual timeline of the
competition series in order to join the Olympic
Games at the Vienna Summer of Logic, in affiliation
with the 30th International Conference on Logic Pro-
gramming (ICLP). It was jointly organized by the Aal-
to University, the University of Calabria, and the Uni-
versity of Genoa. This event did not feature a call for
benchmarks and mostly relied on 2013 benchmarks.
It was mainly conceived as a rerun of the system track
of the previous event: participants to the 2013 event
were invited to submit new versions of their solvers,
but also new solvers were welcome. Several significant
design changes and improvements in the competition
settings were introduced, that is, (1) benchmark class-
es (called tracks in this edition) were defined based on
the presence of language constructs (for example,
aggregates, choice rules, presence of queries) in prob-
lem encoding rather than on a complexity basis, in
order to both push the adoption of the new standard
and allow participation also to solvers that may have
not included all constructs, (2) novel encodings for
almost all problems were proposed, to overcome some
observed limitations of 2013 encodings, and (3) a sim-
plified scoring schema for decision problems, based
on solved instances only, and a scoring schema for
optimization problems solely based on the solvers’s
ranking on solution quality, were employed. Sixteen
solvers entered the competition. Answer set solver
clasp was the winner on the single-processor catego-
ry, while its multithreaded version clasp-MT won the
multithreaded category. Interestingly, the solver
LP2NORMAL+CLASP, which normalizes aggregates
and then resorts to clasp, was the best solver in an
intermediate track, allowing for the full ASP-CORE-2
language, except optimization statements and no
head cycle-free disjunction.

The Sixth ASP Competition (Gebser, Maratea, and
Ricca 2015) was jointly organized by the same institu-
tions as the previous event. Its design maintained

Articles

50 AI MAGAZINE

some choices of the last event, for
example, tracks based on language fea-
tures, the scoring schemes, and the
adherence to the ASP-CORE-2 standard
language. It also presented some novel-
ties, for instance (1) a call for bench-
marks stage focused on obtaining new
benchmarks arising from applications
of practical impact, and/or being ASP
focused, that is, whose encodings are
nontight, and (2) a benchmarks selec-
tion stage was introduced to classify
instances according to their expected
hardness. Moreover, a “marathon”
track was added, where the best per-
forming systems are given more time
for solving hard instances. Thirteen
solvers entered the competition. The
winner of the regular track was the mul-
tiengine solver ME-ASP, while the win-
ner of the marathon track was WASP.

Conclusion
Answer set programming is a thriving
research field that features dozens of
solvers and applications. Engineering
environments for ASP facilitate the
adoption of the technology by a broad
spectrum of users. Quest for the ideal
settings of the ASP competitions attests
to the ever-changing, fast-paced life of
the field, which strives to advance
answer set programming.

Acknowledgments
This work was partially supported by
MIUR under PON project SI-LAB
BA2KNOW Business Analitycs to
Know, and by Regione Calabria, pro-
gramme POR Calabria FESR 2007-
2013, projects ITravel PLUS and
KnowRex: Un sistema per il riconosci-
mento e lestrazione di conoscenza.

Notes
1. Available from www.mat.unical.it/ric-
ca/aspide.

2. The ASP-Core-2 Input Language Format
is available from www.mat.unical.it/asp-
comp2013/files/ASP-CORE-2.01c.pdf.

References
Alviano, M., and Dodaro, C. 2016. Comple-
tion of Disjunctive Logic Programs. In Pro-
ceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence. Palo
Alto, CA: AAAI Press.

Alviano, M.; Calimeri, F.; Charwat, G.; Dao-

Tran, M.; Dodaro, C.; Ianni, G.; Krennwall-
ner, T.; Kronegger, M.; Oetsch, J.; Pfandler,
A.; Pührer, J.; Redl, C.; Ricca, F.; Schneider,
P.; Schwengerer, M.; Spendier, L. K.; Wall-
ner, J. P.; and Xiao, G. 2013. The Fourth
Answer Set Programming Competition: Pre-
liminary Report. In Logic Programming and
Nonmonotonic Reasoning, 12th International
Conference, LPNMR 2013, Lecture Notes in
Computer Science volume 8148, 42–53.
Berlin: Springer.

Alviano, M.; Dodaro, C.; Faber, W.; Leone, N.;
and Ricca, F. 2015. Advances in WASP. In Log-
ic Programming and Nonmonotonic Reasoning
— 13th International Conference, LPNMR 2015,
Lecture Notes in Computer Science volume
9345, 40–54. Berlin: Springer. dx.doi.org/10.
1007/978-3-319-23264-5_5

Brewka, G.; Niemelä, I.; Schaub, T.; and
Truszczyński, M. 2002. Workshop on Non-
monotonic Reasoning, Answer Set Pro-
gramming and Constraints. Papers present-
ed at the Dagstuhl Seminar Nr. 02381,
Nonmonotonic Reasoning, Answer Set Pro-
gramming and Constraints, System Compe-
tition. September 15–20, Waldern, Ger-
many (www.dagstuhl .de/02381).

Brochenin, R.; Lierler, Y.; and Maratea, M.
2014. Abstract Disjunctive Answer Set
Solvers. In ECAI 2014: 21st European Confer-
ence on Artificial Intelligence, Including Presti-
gious Applications of Intelligent Systems (PAIS
2014), volume 263 of Frontiers in Artificial
Intelligence and Applications, 165–170.
Amsterdam: IOS Press.

Busoniu, P.; Oetsch, J.; Pührer, J.; Skocovsky,
P.; and Tompits, H. 2013. SeaLion: An
Eclipse-Based IDE for Answer-set Program-
ming with Advanced Debugging Support.
Theory and Practice of Logic Programming
13(4-5): 657–673. dx.doi.org/10.1017/
S1471068413000410

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, I.;
Kaminski, R.; Krennwallner, T.; Leone, N.;
Ricca, F.; and Schaub, T. 2013. The ASP-
Core-2 Input Language Format. Technical
Report, Università Della Calabria, Consen-
za, Italy. www.mat.unical.it/aspcomp2013/
files/ASP-CORE-2.01c.pdf

Calimeri, F.; Gebser, M.; Maratea, M.; and
Ricca, F. 2016. Design and Results of the
Fifth Answer Set Programming Competi-
tion. Artificial Intelligence 231: 151–181.
dx.doi.org/10.1016/j.artint.2015.09.008

Calimeri, F.; Ianni, G.; and Ricca, F. 2014.
The Third Open Answer Set Programming
Competition. Theory and Practice of Logic
Programming 14(1): 117–135. dx.doi.org/
10.1017/S1471068412000105

Clark, K. L. 1977. Negation as Failure. In
Logic and Data Bases, 293–322. New York:
Plenum Press.

Denecker, M.; Vennekens, J.; Bond, S.; Geb-
ser, M.; and Truszczyński, M. 2009. The Sec-

Articles

FALL 2016 51

ond Answer Set Programming Competition.
In Logic Programming and Nonmonotonic Rea-
soning, 10th International Conference, LPNMR
2009, Lecture Notes in Computer Science
volume 5753, 637–654. Berlin: Berlin:
Springer. dx.doi.org/10.1007/978-3-642-
04238-6_75

Dodaro, C.; Gasteiger, P.; Musitsch, B.; Ric-
ca, F.; and Shchekotykhin, K. 2015. Interac-
tive Debugging of Nonground ASP Pro-
grams. In Logic Programming and
Nonmonotonic Reasoning, 13th International
Conference, LPNMR 2015, Lecture Notes in
Computer Science volume 9345, 279–293.
Berlin: Springer.

Erdem, E.; Gelfond, M.; Leone, N. 2016.
Applications of Answer Set Programming.
AI Magazine 37(3).

Febbraro, O.; Leone, N.; Grasso, G.; and Ric-
ca, F. 2012. JASP: A Framework for Integrat-
ing Answer Set Programming with Java. In
Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth Inter-
national Conference (KR-12). Palo Alto, CA:
AAAI Press.

Febbraro, O.; Leone, N.; Reale, K.; and Ricca,
F. 2011. Unit Testing in ASPIDE. In Applica-
tions of Declarative Programming and Knowl-
edge Management: 19th International Confer-
ence, INAP 2011, and 25th Workshop on Logic
Programming, WLP 2011, Lecture Notes in
Computer Science volume 7773, 345–364.
Berlin: Springer.

Febbraro, O.; Reale, K.; and Ricca, F. 2010. A
Visual Interface for Drawing ASP Programs.
In Proceedings of the 25th Italian Conference
on Computational Logic, volume 598 of
CEUR Workshop Proceedings. Aachen, Ger-
many: RWTH Aachen University.

Febbraro, O.; Reale, K.; and Ricca, F. 2011.
ASPIDE: Integrated Development Environ-
ment for Answer Set Programming. In Logic
Programming and Nonmonotonic Reasoning,
11th International Conference, Lecture Notes
in Computer Science volume 6645, 317–
330. Berlin: Springer.

Gebser, M.; Kaminski, R.; Kaufmann, B.;
Schaub, T.; Schneider, M. T.; and Ziller, S.
2011. A Portfolio Solver for Answer Set Pro-
gramming: Preliminary Report. In Logic Pro-
gramming and Nonmonotonic Reasoning —
11th International Conference, LPNMR 2011,
Lecture Notes in Computer Science volume
6645, 352–357. Berlin: Springer.

Gebser, M.; Kaufmann, B.; and Schaub, T.
2012a. Conflict-Driven Answer Set Solving:
From Theory to Practice. Artificial Intelli-
gence 187: 52–89. dx.doi.org/10.1016/
j.artint.2012.04.001

Gebser, M.; Kaufmann, B.; and Schaub, T.
2012b. Multithreaded ASP Solving with
Clasp. Theory and Practice of Logic Program-
ming 12(4–5): 525–545. dx.doi.org/10.1017/
S1471068412000166

Lin, F., and Zhao, Y. 2004. ASSAT: Comput-
ing Answer Sets of a Logic Program by SAT
Solvers. Artificial Intelligence 157(1–2): 115–
137. dx.doi.org/10.1016/j.artint.2004.04.004

Maratea, M.; Ricca, F.; Faber, W.; and Leone,
N. 2008. Look-Back Techniques and Heuris-
tics in DLV: Implementation, Evaluation,
and Comparison to QBF Solvers. Journal of
Algorithms 63(1–3): 70–89. dx.doi.org/10.
1016/j.jalgor.2008.02.006

Maratea, M.; Pulina, L.; and Ricca, F. 2014.
A MultiEngine Approach to Answer-Set Pro-
gramming. Theory and Practice of Logic Pro-
gramming 14(6): 841–868. dx.doi.org/10.
1017/S1471068413000094

Nieuwenhuis, R.; Oliveras, A.; and Tinelli,
C. 2006. Solving SAT and SAT Modulo The-
ories: From an Abstract Davis–Putnam–
Logemann–Loveland Procedure to DPLL(T).
Journal of the ACM 53(6): 937–977. dx.doi.
org/10.1145/1217856.1217859

Oetsch, J.; Pührer, J.; and Tompits, H. 2011.
Extending Object-Oriented Languages by
Declarative Specifications of Complex
Objects Using Answer-Set Programming. In
the Computing Research Repository CoRR
abs/1112.0922. New York: Association for
Computing Machinery.

Pontelli, E.; Balduccini, M.; and Bermudez, F.
2003. Nonmonotonic Reasoning on Beowulf
Platforms. In Practical Aspects of Declarative
Languages, 5th International Symposium, PADL
2003, Lecture Notes in Computer Science
volume 2562, 37–57. Berlin: Springer.

Perri, S.; Ricca, F.; and Sirianni, M. 2013. Par-
allel Instantiation of ASP Programs: Tech-
niques and Experiments. Thoery and Practice
of Logic Programming 13(2): 253–278. dx.doi.
org/10.1017/S1471068411000652

Ricca, F.; Gallucci, L.; Schindlauer, R.; Del-
l’Armi, T.; Grasso, G.; and Leone, N. 2009.
OntoDLV: An ASP-Based System for Enter-
prise Ontologies. Journal of Logic and Com-
putation 19(4): 643–670. dx.doi.org/10.
1093/logcom/exn042

Ricca, F.; Grasso, G.; Alviano, M.; Manna,
M.; Lio, V.; Iiritano, S.; and Leone, N. 2012.
Team-Building with Answer Set Program-
ming in the Gioia-Tauro Seaport. Theory and
Practive of Logic Programming 12(3): 361–381.
dx.doi.org/10.1017/S147106841100007X

Simons, P.; Niemelä, I.; and Soininen, T.
2002. Extending and Implementing the Sta-
ble Model Semantics. Artificial Intelligence
138(1-2): 181–234. dx.doi.org/10.1016/
S0004-3702(02)00187-X

Syrjänen, T. 2001. Omega-Restricted Logic
Programs. In Logic Programming and Nonmo-
notonic Reasoning, 10th International Confer-
ence, LPNMR 2009, Lecture Notes in Com-
puter Science volume 2173, 267–279.
Berlin: Springer. dx.doi.org/10.1007/3-540-
45402-0_20

Ward, J., and Schlipf, J. S. 2004. Answer Set
Programming with Clause Learning. In Log-
ic Programming and Nonmonotonic Reasoning,
7th International Conference, LPNMR 2004,
Lecture Notes in Computer Science volume
2923, 302–313. Berlin: Springer.

Wittocx, J.; Marïen, M.; and Denecker, M.
2008. The IDP System: A Model Expansion
System for an Extension of Classical Logic.
Paper presented at the Second Workshop on
Logic and Search, Leuven, Belgium, 6–7
November.

Yuliya Lierler is an assistant professor of
computer science at the University of
Nebraska at Omaha. Her research interests
are in the area of knowledge representation,
automated reasoning, declarative problem
solving, and natural language understand-
ing. Her work spans theoretic foundations
as well as practical implementations of
methods for automated reasoning based on
model generation, and applications of these
methods. She completed her Ph.D. in com-
puter science at the University of Texas at
Austin in 2010.

Marco Maratea (www.star.dist.unige.it/
~marco) is an associate professor in com-
puter engineering at the University of
Genoa, Italy. He obtained is Ph.D. at the
Faculty of Engineering at University of
Genoa in 2005. From 2010 to 2014 he was
an assistant professor at the University of
Genova. In fall 2015 he was a university lec-
turer at the Institute for Information Sys-
tems of the Faculty of Informatics at the
Vienna University of Technology, in the
DBAI group. His research interests include
artificial intelligence, logic programming,
and knowledge representation and reason-
ing, in particular answer set programming.

Francesco Ricca is an associate professor in
the Department of Mathematics of the Uni-
versity of Calabria, Italy. He received his
Laurea Degree in computer science engi-
neering in 2002 and a Ph.D. in computer
science and mathematics in 2006 from the
University of Calabria, Italy. He is interested
in declarative logic-based languages, consis-
tent query answering and data integration,
ontologies and, in particular, on the issues
concerning their practical applications: sys-
tem design and implementation, and devel-
opment tools. Ricca is coauthor of more
than 70 refereed articles published in inter-
national journals, collections, and confer-
ence proceedings.

Gebser, M.; Liu, L.; Namasivayam, G.; Neu-
mann, A.; Schaub, T.; and Truszczyński, M.
2007. The First Answer Set Programming
System Competition. In Logic Programming
and Nonmonotonic Reasoning, 9th Interna-
tional Conference, LPNMR 2007, Lecture
Notes in Computer Science volume 4483,
3–17. Berlin: Springer. dx.doi.org/10.1007/
978-3-540-72200-7_3

Gebser, M.; Maratea, M.; and Ricca, F. 2015.
The Design of the Sixth Answer Set Pro-
gramming Competition: Report. In Logic
Programming and Nonmonotonic Reasoning,
13th International Conference, LPNMR 2015,
Lecture Notes in Computer Science volume
9345. Berlin: Springer.

Gebser, M.; Schaub, T.; and Thiele, S. 2007.
GrinGo: A New Grounder for Answer Set
Programming. In Logic Programming and
Nonmonotonic Reasoning, 9th International
Conference, LPNMR 2007, Lecture Notes in
Computer Science volume 4483, 266–271.
Berlin: Springer. dx.doi.org/10.1007/978-3-
540-72200-7_24

Gelfond, M., and Lifschitz, V. 1988. The Sta-
ble Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of
the Fifth International Conference and Sympo-
sium, 1070–1080. Cambridge, MA: The MIT
Press.

Giunchiglia, E.; Lierler, Y.; and Maratea, M.
2006. Answer Set Programming Based on
Propositional Satisfiability. Journal of Auto-
mated Reasoning 36(4): 345–377. dx.doi.org/
10.1007/s10817-006-9033-2

Grasso, G.; Leone, N.; Manna, M.; and Ric-
ca, F. 2011. ASP at Work: Spin-off and Appli-
cations of the DLV System. In Logic Pro-
gramming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays Dedicated to
Michael Gelfond on the Occasion of His 65th
Birthday, volume 6565 of Lecture Notes in
Computer Science, 432–451. Berlin:
Springer.

Janhunen, T. 2006. Some (In)translatability
Results for Normal Logic Programs and
Propositional Theories. Journal of Applied
Non-Classical Logics 16(1-2): 35–86.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.;
Gottlob, G.; Perri, S.; and Scarcello, F. 2006.
The DLV System for Knowledge Representa-
tion and Reasoning. ACM Transactions on
Computational Logic 7(3): 499–562. dx.doi.
org/10.1145/1149114.1149117

Lierler, Y. 2014. Relating Constraint Answer
Set Programming Languages and Algo-
rithms. Artificial Intelligence 207(February):
1–22. dx.doi.org/10.1016/j.artint.2013.10.
004

Lierler, Y., and Truszczyński, M. 2011. Tran-
sition Systems for Model Generators: A Uni-
fying Approach. Theory and Practice of Logic
Programming 11(4–5): 629–646. dx.doi.org/
10.1017/S1471068411000214

Articles

52 AI MAGAZINE

