
What is the single most significant capability that
artificial intelligence can deliver? What pushes the
human race forward? Our civilization has

advanced largely by scientific discoveries and the application
of such knowledge. Therefore, I propose the launch of a
grand challenge to develop AI systems that can make signifi-
cant scientific discoveries. As a field with great potential
social impacts, and one that suffers particularly from infor-
mation overflow, along with the limitations of human cog-
nition, I believe that the initial focus of this challenge should
be on biomedical sciences, but it can be applied to other areas
later. The challenge is “to develop an AI system that can
make major scientific discoveries in biomedical sciences and
that is worthy of a Nobel Prize and far beyond.” While recent
progress in high-throughput “omics” measurement tech-
nologies has enabled us to generate vast quantities of data,
scientific discoveries themselves still depend heavily upon
individual intuition, while researchers are often over-
whelmed by the sheer amount of data, as well as by the com-
plexity of the biological phenomena they are seeking to
understand. Even now, scientific discovery remains some-
thing akin to a cottage industry, but a great transformation
seems to have begun. This is an ideal domain and the ideal
timing for AI to make a difference. I anticipate that, in the
near future, AI systems will make a succession of discoveries
that have immediate medical implications, saving millions
of lives, and totally changing the fate of the human race.
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� This article proposes a new grand
challenge for AI: to develop an AI sys-
tem that can make major scientific dis-
coveries in biomedical sciences and that
is worthy of a Nobel Prize. There are a
series of human cognitive limitations
that prevent us from making accelerat-
ed scientific discoveries, particularity in
biomedical sciences. As a result, scien-
tific discoveries are left at the level of a
cottage industry. AI systems can trans-
form scientific discoveries into highly
efficient practices, thereby enabling us
to expand our knowledge in unprece-
dented ways. Such systems may out-
compute all possible hypotheses and
may redefine the nature of scientific
intuition, hence the scientific discovery
process.



Grand Challenges as a 
Driving Force in AI Research

Throughout the history of research into artificial
intelligence, a series of grand challenges have been
significant driving factors. Advances in computer
chess demonstrated that a computer can exhibit
human-level intelligence in a specific domain. In
1997, IBM’s chess computer Deep Blue defeated
human world champion Gary Kasparov (Hsu 2004).
Various search algorithms, parallel computing, and
other computing techniques originating from com-
puter chess research have been applied in other
fields. IBM took on another challenge when it set the
new goal of building a computer that could win the
TV quiz show Jeopardy! In this task, which involved
the real-time answering of open-domain questions
(Ferrucci et al. 2010, Ferrucci et al. 2013), IBM’s Wat-
son computer outperformed human quiz champions.
IBM is currently applying technology from Watson
as part of its business in a range of industrial and
medical fields. In an extension of prior work on com-
puter chess, Japanese researchers have even managed
to produce a machine capable of beating human
grand masters of Shogi, a Japanese chess variant with
a significantly larger number of possible moves.

RoboCup is a grand challenge founded in 1997
that traverses the fields of robotics and soccer. The
aim of this initiative is to promote the development
by the year 2050 of a team of fully autonomous
humanoid robots that is able to beat the most recent
winners of the FIFA World Cup (Kitano et al. 1997).
This is a task that requires both an integrated, collec-
tive intelligence and exceptionally high levels of
physical performance. Since the inaugural event, the
scheme has already given birth to a series of tech-
nologies that have been deployed in the real world.
For example, KIVA Systems, a technology company
that was formed based largely on technologies from
Cornell University’s team for RoboCup’s Small Size
League, provided a highly automated warehouse
management system that Amazon.com acquired in
2012. Various robots that were developed for the Res-
cue Robot League — a part of RoboCup focused on
disaster rescue — have been deployed in real-world
situations, including search and rescue operations at
New York’s World Trade Center in the aftermath of
the 9/11 terror attacks, as well as for surveillance mis-
sions following the accident at the Fukushima Dai-
ichi Nuclear Power Plant.

These grand challenges present a sharp contrast
with the Turing test, aimed as they are at the devel-
opment of superhuman capabilities as opposed to the
Turing test’s attempts to answer the question “Can
machines think?” by creating a machine that can
generate humanlike responses to natural language
dialogues (Turing 1950). These differing approaches
present different scientific challenges, and, while
going forward we may expect some cross-fertilization

between these processes, this article focuses on the
grand challenge of building superhuman capabilities. 

History provides many insights into changes over
time in the technical approaches to these challenges.
In the early days of AI research, it was widely accept-
ed that a brute force approach would not work for
chess, and that heuristic programming was essential
for very large and complex problems (Feigenbaum
and Feldman 1963). Actual events, however, con-
founded this expectation. Among the features criti-
cal for computer chess were the massive computing
capability required to search millions of moves; vast
memory to store a record of all past games; and a
learning mechanism to evaluate the quality of each
move and adjust search paths accordingly. Comput-
ing power, memory, and learning have proven to
hold the winning formula, overcoming sophisticated
heuristics. The 1990s saw a similar transformation of
approach in speech recognition, where rule-based
systems were outperformed by data- and computing-
driven systems based on hidden Markov models (Lee
1988). Watson, the IBM computer that won the Jeop-
ardy! quiz show, added new dimensions of massively
parallel heterogeneous inference and real-time sto-
chastic reasoning. Coordination of multiple different
reasoning systems is also key when it comes to Sho-
gi. Interestingly, similar technical features are also
critical in bioinformatics problems (Hase et al. 2013;
Hsin, Ghosh, and Kitano 2013). Elements currently
seen as critical include massively parallel heteroge-
neous computing, real-time stochastic reasoning,
limitless access to information throughout the net-
work, and sophisticated multistrategy learning.
Recent progress in computer GO added a combina-
tion of deep learning, reinforcement learning, and
tree search to be the winning formula (Silver et al.
2016). Challenges such as those described have been
highly effective in promoting AI research. By demon-
strating the latest advances in AI, and creating high-
impact industrial applications, they continue to con-
tribute to the progress of AI and its applications.

The Scientific Discovery 
Grand Challenge

It is time to make an even greater stride, by imagin-
ing and initiating a new challenge that may change
our very principles of intelligence and civilization.
While scientific discovery is not the only driving
force of our civilization, it has been one of the most
critical factors. Creating AI systems with a very high
capability for scientific discovery will have a pro-
found impact, not only in the fields of AI and com-
puter science, but also in the broader realms of sci-
ence and technology. It is a commonly held
perception that scientific discoveries take place after
years of dedicated effort or at a moment of great
serendipity. The process of scientific discovery as we
know it today is considered unpredictable and ineffi-
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cient and yet is blithely accepted. I would argue,
however, that the practice of scientific discovery is
stuck at a level akin to that of a cottage industry. I
believe that the productivity and fundamental
modalities of the scientific discovery process can be
dramatically improved. The real challenge is to trig-
ger a revolution in science equivalent to the indus-
trial revolution.

It should be noted that machine discovery, or dis-
covery informatics (Gil et al. 2014, Gil and Hirsh
2012), has long been a major topic for AI research.
BEACON (Langley and Simon 1987), DENDRAL
(Lindsay et al. 1993), AM, and EURISKO (Lenat and
Brown 1984) are just some of the systems of this
nature developed to date. 

We must aim high. What distinguishes the pro-
posed challenge from past efforts is its focus on bio-
medical sciences in the context of dramatic increases
in the amount of information and data available,
along with levels of interconnection of experimental
devices that were unavailable in the past. It is also set
apart by the focus on research, with the extremely
ambitious goal of facilitating major scientific discov-
eries in the biomedical sciences that may go on to
earn the Nobel Prize in Physiology or Medicine, or
achieve even more profound results. This is the
moonshot in AI. Just as the Apollo project’s goal went
beyond the moon (Kennedy 1961, 1962), the goals of
this project go far beyond the Nobel Prize. The goal
is to promote a revolution in scientific discovery and
to enable the fastest-possible expansion in the
knowledge base of mankind. The development of AI
systems with such a level of intelligence would have
a profound impact on the future of humanity.

Human Cognitive Limitations in
Biomedical Sciences

There are fundamental difficulties in biomedical
research that overwhelm the cognitive capabilities of
humans. This problem became even more pro-
nounced with the emergence of systems biology
(Kitano 2002a, 2002b). Some of the key problems are
outlined below.

First, there is the information horizon problem.
Biomedical research is flooded with data and publi-
cations at a rate of production that goes far beyond
human information-processing capabilities. Over 1
million papers are published each year, and this rate
is increasing rapidly. Researchers are already over-
whelmed by the flood of papers and data, some of
which may be contradictory, inaccurate, or misused.
It is simply not possible for any researcher to read, let
alone comprehend, such a deluge of information in
order to maintain consistent and up-to-date knowl-
edge. The amount of experimental data is exploding
at an even faster pace, with widespread use of high-
throughput measurement systems. Just as the rapid-
ly expanding universe creates a cosmic event horizon

that prevents even light emitted in the distant past
from reaching us, thus rendering it unobservable, the
never-ending abundance of publications and data
creates an information horizon that prevents us from
observing a whole picture of what we have discov-
ered and what data we have gathered. It is my hope
that, with the progress instigated by the challenge I
am proposing, AI systems will be able to compile a
vast body of intelligence in order to mitigate this
problem (Gil et al. 2014).

Second, there is also the problem of an informa-
tion gap. Papers are written in language that fre-
quently involves ambiguity, inaccuracy, and missing
information. Efforts to develop a large-scale compre-
hensive map of molecular interactions (Caron et al.
2010, Matsuoka et al. 2013, Oda and Kitano 2006,
Oda et al. 2005) or any kind of biological knowledge
base of any form will encounter this problem (see
sidebar). Our interpretation, hence human-based
knowledge extraction, largely depends on subjective-
ly filling in the gaps using the reader’s own knowl-
edge or representation of knowledge with missing
details, results in an arbitral interpretation of knowl-
edge in the text.

Obviously, solving this is far beyond the capacity
to convey information of the language of a given text
(Li, Liakata, and Rebholz-Schuhmann 2014). It also
involves actively searching for missing information
to discern what is missing and how to find it. It is
important to capture details of the interactions with-
in a process rather than merely an abstracted
overview, because researchers are well aware of over-
all interaction and expect such a knowledge base, or
maps, to provide consistent and comprehensive yet
in-depth description of each interaction. Similar
issues exist when it comes to understanding images
from experiments. They include: how to interpret
images, checking consistency with the sum of past
data, identifying differences and the reasons for
these, and recovering missing information on exper-
imental conditions and protocol.

Third, there is a problem of phenotyping inaccu-
racy. The word phenotyping refers to representation
and categorization of biological anomalies such as
disease, effects of genetics mutations, and develop-
mental defects. Phenotyping is generally performed
based on subjective interpretation and consensus of
medical practitioners and biologists, described using
terms that are relatively easy to understand. This
practice itself is tightly linked with human cognitive
limitations. Biomedical sciences have to deal with
complex biological systems that are highly nonlin-
ear, multidimensional systems. Naïve delineation of
observation into coarse categorization can create sig-
nificant inaccuracies and lead to misdiagnosis and
inaccurate understanding of biological phenomena
(figure 1a). This is a practical clinical problem as sig-
nified in some rare disease cases that took decades for
patients to be diagnosed and had almost 40 percent



An Example of Missing Information in a Biological Statement

Biomedical science is knowledge-intensive and empirical science. Currently, knowledge is embedded in the
text and images in publications. The figure exemplifies a case of missing information implicit in biomed-
ical papers. Take the example of the following typical sentence from a biology paper: “In contrast, in
response to mating pheromones, the Far1-Cdc24 complex is exported from the nucleus by Msn5” (taken
from the abstract by Shimada, Gulli, and Peter [2000]). We can extract knowledge on a specific molecular
interaction involving the Far1-Cdc24 complex and Msn5 and represent this graphically. The sentence itself
does not, however, describe where the Far-Cdc24 complex is exported to, and where Msn5 is located. In
such cases, researchers can fill in the conceptual gaps from their own biological knowledge. However, it is
not clear if all forms of the Far1-Cdc24 complex will become the subject of this interaction, nor if all forms
of Msn5 can conduct this export process. In this case, the general biological knowledge of researchers will
generally prove insufficient to fill in such gaps, thereby necessitating either the inclusion of a specific clar-
ifying statement elsewhere in the paper, or the need to search other papers and databases to fill this gap.

of initial misdiagnosis rate (EURORDIS 2007). Clini-
cal diagnosis is a process of observation, categoriza-
tion of observed results, and hypothesis generation
on a patient’s disease status. Misdiagnosis leads to
inappropriate therapeutic interventions. Identifica-
tion of proper feature combinations for each axis, the
proper dimension for the representation of space,
and the proper granularity for categorization shall
significantly improve diagnosis, hence therapeutic
efficacy (figure 1b). Extremely complex feature com-
binations for each axis, extreme high-dimensional

representation of space, and extremely fine-grained
categorization that can be termed as extreme classifi-
cation shall dramatically improve accuracy of diagno-
sis. Since many diseases are constellations of very
large numbers of subtypes of diseases, such an
extreme classification shall enable us to properly
identify specific patient subgroups that may not be
identified as an isolate group at present and lead to
specific therapeutic options. However, an emerging
problem would be that humans may not be able to
comprehend what exactly each category means in
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In contrast, in response to mating pheromones, the Far1–Cdc24 
complex is exported from the nucleus by Msn5
 

Far1-Cdc24 Far1-Cdc24 

Msn5 

From the nucleus to where?
Is Msn5 within the nucleus?
Are all forms of Far1-Cdc24 exported?
Can all forms of Msn5 do this? 



relation to their own biomedical knowledge, which
was developed based on the current coarse and low-
dimensional categorization.

Another closely related problem is that of cogni-
tive bias. Due to the unavoidable use of language and
symbols in our process of reasoning and communi-
cation, our thought processes are inevitably biased.
As discussed previously, natural language does not
properly represent biological reality. Alfred Kozybs-
ki’s statement that “the map is not the territory”
(Korzybski 1933) is especially true in biomedical sci-
ences (figure 2). Vast knowledge of the field comes in
the form of papers that are full of such biases. Our
ability to ignore inaccuracies and ambiguity facili-
tates our daily communication, yet poses serious lim-
itations on scientific inquiry. 

Then there is the minority report problem. Biolo-
gy is an empirical science, meaning knowledge is
accumulated based on experimental findings. Due to
the complexity of biological systems, diversity of
individuals, uncertainty of experimental conditions,
and other factors, there are substantial deviations
and errors in research outcomes. While consensus
among a majority of reports can be considered to
portray the most probable reality regarding a specific
aspect of biological systems, reports exist that are not
consistent with this majority (figure 3).

Whether such minority reports can be discarded as
errors or false reports is debatable. While some will

naturally fall into this category, others may be correct,
and may even report unexpected biological findings
that could lead to a major discovery. How can we dis-
tinguish between such erroneous reports and those
with the potential to facilitate major discoveries?

Are We Ready to Embark 
on This Challenge?

I have described some of the human cognitive limi-
tations that act as obstacles to efficient biomedical
research, and that AI systems may be able to resolve
during the course of the challenge I am proposing.
Interestingly, there are a few precedents that may
provide a useful starting point. Of the early efforts to
mitigate the information horizon problem, research
using IBM’s Watson computer is currently focused on
the medical domain. The intention is to compile the
vast available literature and present it in a coherent
manner, in contrast to human medical practitioners
and researchers who cannot read and digest the
entire available corpus of information. Watson was
used in a collaboration between IBM, Baylor College
of Medicine, and MD Anderson Cancer Center that
led to the identification of novel modification sites
of p53, an important protein for cancer suppression
(Spangler et al. 2014). A recent DARPA Big Mecha-
nism Project (BMP) aimed at automated extraction of
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Which feature or feature combinations to use? 
For example, Y-Axis = feature A versus Y-Axis = f(feature A, feature B, feature D)

How many representation dimensions?

What is the best granularity for categorization? 
 
For example, Low, Mid, High (coarse) versus Low-low, Low-mid, Low-high, 
Mid-low, Mid-mid, Mid-high, Mid-very-high, High-low, High-high (Fine-grain)

A B

feature B

Low

Mid

High

Low Mid High

False positive

False negative

Correctfeature A

Figure 1. Problems in the Representation and Categorization of Biological Objects and Processes.

Left figure modified based on Kitano (1993). Figure 1a is an example of an attempt to represent a nonlinear boundary object,
assumed to be a simplification of a phenotype, with a simple two-feature dimensional space with coarse categorization such
as Low, Mid, and High. The object can be most covered with “feature A = Mid and feature B = Mid condition.” However, it
inevitably results in inaccuracy (false-positives and false-negatives). Improving accuracy of nonlinear object coverage
requires the proper choice of the feature complex for each axis, the proper dimension of representational space, and the
proper choice of categorization granularity (figure 1b).
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Figure 3. Should Minority Reports Be Discarded? Or Might They Open Up Major Discoveries?



large-scale molecular interactions related to cancer
(Cohen 2014). 

With regard to problems of phenotyping inaccura-
cy, progress in machine learning as exemplified in
deep learning may enable us to resolve some cogni-
tive issues. There are particular hopes that computers
may learn to acquire proper features for representing
complex objects (Bengio 2009; Bengio, Courville,
and Vincent 2013; Hinton 2011). Deep phenotyping
is an attempt to develop much finer-grained and in-
depth phenotyping than current practice provides to
establish highly accurate diagnosis, patient classifica-
tion, and precision clinical decisions (Frey, Lenert,
and Lopez-Campos 2014; Robinson 2012), and some
of pioneering researchers are using deep learning
(Che et al. 2015). Combining deep phenotyping and
personal genomics as well as other comprehensive
measurements leads to dramatically improved accu-
rate diagnosis and effective therapeutic interven-
tions, as well as improving drug discovery efficiency.

For generating hypotheses and verifying them,
Ross King and his colleagues have developed a sys-
tematic robot scientist that can infer possible biolog-
ical hypotheses and design simple experiments using
a defined-protocol automated system to analyze
orphan genes in budding yeast (King et al. 2009a,
2009b; King et al. 2004). While this brought only a
moderate level of discovery within the defined con-
text of budding yeast genes, the study represented an
integration of bioinformatics-driven hypothesis gen-
eration and automated experimental processes. Such
an automatic experimental system has great poten-
tial for expansion and could become a driving force
for research in the future.

Most experimental devices these days are highly
automated and connected to networks. In the near
future, it is likely that many will be supplemented by
high-precision robotics systems, enabling AI systems
not only to access digital information but also to
design and execute experiments. That would mean
that every detail of experimental results, including
incomplete or erroneous data, could be stored and
made accessible. Such progress would have a dramat-
ic impact on the issues of long-tail distribution and
dark data in science (Heidorn 2008).

Crowdsourcing of science, or citizen science, offers
many interesting opportunities, and great potential
for integration with AI systems. The protein-folding
game FoldIt, released in 2008, demonstrated that
with proper redefinition of a scientific problem, ordi-
nary citizens can contribute to the process of scien-
tific discovery (Khatib et al. 2011). Patient-powered
research network Patientslikeme is another example
of how motivated ordinary people can contribute to
science (Wicks et al. 2015, Wicks et al. 2011). While
successful deployment of community-based science
requires carefully designed missions, clear definition
of problems, and the implementation of appropriate
user interfaces (Kitano, Ghosh, and Matsuoka 2011),
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crowdsourcing may offer an interesting opportunity
for AI-based scientific discovery. This is because, with
proper redefinition of a problem, a system may also
help to facilitate the best use of human intelligence. 

There are efforts to develop platforms that can
connect a broad range of software systems, devices,
databases, and other necessary resources. The Garuda
platform is an effort to develop an open application
programming interface (API) platform aimed at
attaining a high-level of interoperability among bio-
medical and bioinformatics analysis tools, databases,
devices, and others (Ghosh et al. 2011). The Pegasus
and Wings system is another example that focuses on
sharing the workflow of scientific activities (Gil et al.
2007). A large-scale collection of workflow from the
scientific community that may direct possible
sequences of analysis and experiments used and
reformulated by AI systems would be a powerful
knowledge asset. With globally interconnected high-
performance computing systems such as InfiniCortex
Michalewicz, et al. 2015), we are now getting ready to
undertake this new and formidable challenge. Such
research could form the partial basis of this chal-
lenge. At the same time, we still require a clear game
plan, or at the very least an initial hypothesis.

Scientific Discovery as a 
Search Problem: Deep 

Exploration of Knowledge Space
What is the essence of discovery? To rephrase the
question, what could be the engine for scientific dis-
covery? Consistent and broad-ranging knowledge is
essential, but does not automatically lead to new dis-
coveries. When I talk about this initiative, many sci-
entists ask whether AI can be equipped with the nec-
essary intuition for discovery. In other words, can AI
systems be designed to ask the “right” questions that
may lead to major scientific discoveries? While this
certainly appears to be a valid question, let us think
more deeply here. Why is asking the right question
important? It may be due to resource constraints
(such as the time for which researchers can remain
active in their professional careers), budget, competi-
tion, and other limitations. Efficiency is, therefore,
the critical factor to the success of this challenge.
When time and resources are abundant, the impor-
tance of asking the right questions is reduced. One
might arrive at important findings after detours, so
the route is not of particular significance. At the same
time, science has long relied to a certain extent on
serendipity, where researchers made a major discov-
ery by accident. Thinking about such observations, it
is possible to arrive at a hypothesis that infers that
the critical aspect of scientific discovery is how many
hypotheses can be generated and tested, including
examples that may seem highly unlikely.

This indicates the potential to scientific discovery



ial hypothesis generation, the maintenance of a con-
sistent repository of global knowledge, and perhaps a
number of other fundamental principles that we may
not be aware of at present. Thus, by using computing
to generate and verify as quickly as possible the full
range of logically possible hypotheses, it would miti-
gate resource constraint issues and enable us to exam-
ine even unexpected or seemingly far-fetched ideas.
Such an approach would significantly reduce the
need to ask the right questions, thereby rendering sci-
entific intuition obsolete, and perhaps even enabling
us to explore computational serendipity. 

The engine of discovery should be a closed-loop
system of hypothesis generation and verification,
knowledge maintenance, knowledge integration, and
so on (figure 4) and should integrate a range of tech-
nologies (figure 5). Fundamentally speaking,
hypotheses, along with constraints imposed on

of a brute-force approach in which AI systems gener-
ate and verify as many hypotheses as possible. Such
an approach may differ from the way in which sci-
entists traditionally conduct their research, but could
become a computational alternative to the provision
of scientific insights. It should be stressed that while
the goal of the grand challenge is to make major sci-
entific discoveries, this does not necessarily mean
those discoveries should be made as if by human sci-
entists.

The brute-force approach empowered by machine
learning and heterogeneous inference has already
provided the basis of success for a number of grand
challenges to date. As long as a hypothesis can be ver-
ified, scientific discovery can also incorporate com-
puting to search for probable correct hypotheses from
among the full range of possible ones. The funda-
mental thrust should be toward massive combinator-
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Figure 4. Bootstrapping of Scientific Discovery and Knowledge Accumulation.

Correct and incorrect knowledge, data, and experimental results are involved throughout this process, though some may be ambiguous.
Scientific discovery requires an iterative cycle aimed at expanding our knowledge on this fragile ground. The aim is to compute, verify, and
integrate every possible hypothesis, thereby building a consistent body of knowledge. 



hypothesis generation and the initial validation
process, would be derived from the vast body of
knowledge to be extracted from publications, data-
bases, and automatically executed experiments. Suc-
cessfully verified hypotheses would be added to the
body of knowledge, enabling the bootstrapping
process to continue. It is crucial to recognize that not
all papers and data to emerge from the scientific com-
munity are correct or reliable; they contain substan-
tial errors, missing information, and even fabrica-
tions. It may be extremely difficult to reproduce the
published experimental results, and some may prove
impossible to re-create (Prinz, Schlange, and Asadul-
lah 2011). At the same time, major progress is con-
tinually being made in the field of biomedical sci-
ence. How can this be possible if such a high
proportion of papers present results that are false or
not reproducible? While individual reports may con-
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tain a range of problems, collective knowledge has
the potential to uncover truths from even an error-
prone scientific process. This is a twilight zone of sci-
entific discovery, and AI systems need to be able to
reason in the twilight zone. The proposed challenge
would shed light on this conundrum. 

Advanced Intelligence
What is certain is that such a system would substan-
tially reinforce the intellectual capabilities of humans
in a manner that is entirely without precedent and
that holds the potential to change fundamentally the
way science is conducted.

The first-ever defeat of a chess grand master by an
AI system was followed by the emergence of a new
style of chess known as advanced chess, in which
human and computer work together as a team, to
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Figure 5. Evolution of Key Elements in Grand Challenges and Possible Elements of the Scientific Discovery Grand Challenge. 

Computing, memory, and learning have long been key elements in computer chess. Further techniques have originated from the applica-
tion of computers to the quiz show Jeopardy! To facilitate scientific discovery, an even more complex and sophisticated range of functions
is required. The term twilight-zone reasoning refers to the parsing of data and publications that may be highly ambiguous, error-prone, or
faulty. The elements introduced here represent general ideas on how to approach the scientific discovery grand challenge, rather than orig-
inating from precise technical analysis of the necessary functionalities.
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take on similarly equipped competitors. This part-
nership may be considered a form of human-com-
puter symbiosis in intelligent activities. Similarly, we
can foresee that in the future sophisticated AI systems
and human researchers will work together to make
major scientific discoveries. Such an approach can be
considered “advanced intelligence.” 

Advanced intelligence as applied to scientific dis-
covery would go beyond existing combinations of AI
and human experts. Just as most competitive bio-
medical research institutions are now equipped with
high-throughput experimental systems, I believe that
AI systems will become a fundamental part of the
infrastructure for top-level research institutions in
the future. This may involve a substantial level of
crowd intelligence, utilizing the contributions of
both qualified researchers and ordinary people to
contribute, each for different tasks, thereby forming
a collaborative form of intelligence that could be ably
and efficiently orchestrated by AI systems. Drawing
this idea out to its extreme, it may be possible to
place AI systems at the center of a network of intelli-
gent agents — comprising both other AI systems and
humans — to coordinate large-scale intellectual
activities. Whether this path would ultimately make
our civilization more robust (by facilitating a series of
major scientific discoveries) or more fragile (due to
extensive and excessive dependence on AI systems) is
yet to be seen. However, just as Thomas Newcomen’s
atmospheric engine was turned into a modern form
of steam engine by James Watt to become the driving
force of the industrial revolution, AI scientific dis-
covery systems have the potential to drive a new rev-
olution that leads to new frontiers of civilization.
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