
Articles

SUMMER 2015 33

Knowledge workers perform work on many different
tasks per day, often spending only minutes on any par-
ticular task before switching to another (Gonzales and

Mark 2004). There is a concrete cost to such task switches;
with each switch, workers waste time repeatedly identifying
information, such as parts of web pages, documents, and
emails, relevant to their current task. The difficulty and cost
of making task switches is exacerbated because the knowl-
edge worker must locate the relevant information amongst
the vast information space available to him or her through
file systems, the web, and other tools.

To recall and identify the information relevant to a partic-
ular task, a knowledge worker must currently rely on his or
her semantic memory (Snowden 1996). Semantic memory
requires multiple exposures to each referent, with each expo-
sure updating the memory. Semantic memory is well suited
to working with small information spaces where a knowledge
worker can become familiar with a substantial portion of the
information space in a reasonable amount of time. However,
when working with a large information space, the limitations
of semantic memory become apparent. Knowledge workers
must spend an inordinate amount of time reminding them-
selves of the bits and pieces of an information space to com-
plete a task.

Copyright © 2015, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Reducing Friction for
Knowledge Workers
with Task Context

Mik Kersten, Gail C. Murphy

� Knowledge workers perform work on
many tasks per day and often switch
between tasks. When performing work
on a task, a knowledge worker must typ-
ically search, navigate, and dig through
file systems, documents, and emails, all
of which introduce friction into the flow
of work. This friction can be reduced,
and productivity improved, by capturing
and modeling the context of a knowl-
edge worker’s task based on how the
knowledge worker interacts with an
information space. Captured task con-
texts can be used to facilitate switching
between tasks, to focus a user interface
on just the information needed by a
task, and to recommend potentially oth-
er useful information. We report on the
use of task contexts and the effect of
context on productivity for a particular
kind of knowledge worker, software
developers. We also report on qualita-
tive findings of the use of task contexts
by a more general population of knowl-
edge workers.

Articles

34 AI MAGAZINE

To help a knowledge worker perform work on larg-
er information spaces, we have been investigating
tools that leverage the knowledge worker’s episodic
memory, in which only one exposure is required to
remember an event. Episodic memory can be seen as
a map that ties together semantic memories (Snow-
den 1996). A common form of episode for knowledge
workers are the tasks that a knowledge worker per-
forms, where a task is defined as “a usually assigned
piece of work often to be finished within a certain
time.”1 Instead of forcing knowledge workers to find
and recall information related to a task, we provide a
facility to capture and model the information related
to a task as it is performed and then provide a facili-
ty to recall tasks easily along with with their associ-
ated information when a task is revisited. We use the
term task context to refer to the subset of information
relevant to a task. We follow the semantic memory
concept of reinforcement (Plotnik 2004) by automat-
ically weighting the pieces of information associated
with a task according to how frequently and recent-
ly the information is accessed as part of the task. The
only burden we impose on a knowledge worker is the
need for him or her to indicate the episodes by defin-
ing and activating the tasks on which he or she
works.

We show how we can use task contexts to reduce
the friction and improve the flow of a knowledge
worker’s work through such operations as focusing
the user interface on the information relevant to a
task and allowing the exchange of task contexts
between knowledge workers. We report on the effect
on productivity of introducing task contexts to one
particular kind of knowledge worker, software devel-
opers. Hundreds of thousands of software developers
have access to task contexts daily through the open
source Eclipse Mylyn project2 that we created and
continue to evolve. We also report on qualitative data
that we have gathered about the use of task contexts
for more general knowledge workers.

This article draws on material published earlier
about the definition of task contexts and the use of
task context to improve productivity for software
developers (Kersten and Murphy 2006), adding the
application of task contexts to knowledge work, pre-
viously presented at a workshop (Kersten and Mur-
phy 2012).

We begin the article with a review of related efforts
and a description of our use of the term task context.
We then describe how we have made use of task con-
texts in task-focused user interfaces and review the
use of those interfaces to improve productivity across
three field studies: one of programmers, one of
knowledge workers for a short period of time, and
one of knowledge workers over several years. We con-
clude with directions for future research in this area.

Task Management Systems
One way to manage information associated with tasks
is to allow a user to have virtual desktops, as is com-
mon in modern operating systems. A virtual desktop
allows applications to be clustered on separate virtual
screens. For some users, each virtual desktop corre-
sponds to a separate coarse-grained task, such as read-
ing email. Henderson and Card’s original Rooms sys-
tem (Card and Henderson 1987) that introduced
virtual desktops considered support for quick and
semantic access between desktops and for multiple
applications with different information to be displayed
in different desktops. These characteristics are not
found in current operating system implementations.

Other systems have considered a task-centered
approach to the management of documents, such as
the Placeless and Presto projects that supported a
user-driven flexible, but manual, configuration of
documents similar to the tagging functionality avail-
able in the user interfaces of modern email systems
(Dourish et al. 1999). In these systems and in virtual
desktops, the structure of tasks must be explicitly
defined. More recent work has considered the
automation of task definition and contexts; for
example, systems have been developed that extract
the definitions and contents of tasks from relevant
information sources, such as email (Belotti et al.
2003).

The idea that the information associated with a
task could be automatically determined based on
interaction was introduced by the user-monitoring
environment for activities (UMEA) system (Kaptelin-
in 2003) and expanded upon by the TaskTracer sys-
tem (Dragunov et al. 2005). Each of these systems
monitor a knowledge worker’s interactions with
information and create a listing of the information
interacted with as part of each task, in the case of
TaskTracer, and as part of each project, in the case of
UMEA. In these systems, the context of the task con-
sists of separate pieces of information with no mod-
el of how the information is related. In these systems,
the context also increases with the amount of inter-
action unless a user takes explicit action to delete
information from the task, causing the potential for
a task context to overwhelm a knowledge worker and
reduce the benefits of providing the context.

The context-aware activity display (CAAD) system
attempts to provide more automation by inferring
both task boundaries and the information associated
with a task based on the patterns in which informa-
tion is accessed together by a knowledge worker (Rat-
tenbury and Canny 2007). Data from a short-term
10-person study of the use of CAAD suggests that
while the discovered artifact groupings provide utili-
ty for users, the most common edit event applied by
a user to a grouping was still to delete an artifact. The
need for a knowledge worker to edit the task context
introduces friction into the worker’s work flow that
the context is intended to alleviate.

Articles

SUMMER 2015 35

Table 1. Kinds of Interaction Events.T bl 1 Ki d f I i E

Event kind Interaction Description

selection direct Selections through mouse or keyboard

edit direct Textual and graphic edits

command direct Operations such as saving

propagation indirect Propagate to structurally related elements

prediction indirect Potential future interactions

To address the automatic trimming of task con-
texts, a refinement of TaskTracer used machine-learn-
ing techniques to predict which web pages accessed
as part of a task were likely to be revisited (Lettkeman
et al. 2006). While they were able to achieve almost
80 percent accuracy in predicting what web pages a
user would want to keep in his or her browsing his-
tory, they did find a substantial difference in results
between users. This result reinforces a need to have
models that can react to the needs of knowledge
workers.

This previous work demonstrates the possibilities
for helping smooth the activity of knowledge work-
ers through tool support that segments a worker’s
activity into tasks. This existing work is limited in its
treatment of the context of the task, particularly in
the lack of modeling the ebb and flow of the impor-
tance of particular information artifacts to a task at
hand.

Task Context
Recent advances in ubiquitous computing have
showcased the need for addressing context explicitly
in computing systems as it can be critical for a com-
puting system to know when and to where a compu-
tation has moved. The rise of ubiquitous computing
has lead to more and broader ideas of context. Our
use of contexts for tasks is narrower. We consider
context as a representational problem (Dourish
2004), focusing on the information that must be con-
sulted, created, or changed to complete work on the
task. The information we consider to form a task con-
text consists of pieces of unique identifiable digital
content and the relationships between those pieces.
Following in the tradition of UMEA, we determine
the task context from the interaction of the knowl-
edge worker with the information. Activity or work
performed on the task is thus simultaneously help-
ing to form the context for the task while also caus-
ing the work to occur.

A task context consists of a graph of the parts of
digital artifacts (elements) and relations between the

artifacts. Each element and relation in the graph is
given a weighting that defines its relevance, or
degree-of-interest (DOI), to the task. The contents
and weightings in the graph are defined entirely by
an interaction history, which is comprised of a
sequence of interaction events that a knowledge
worker has with the information in their space (that
is, the artifacts) and the indirect interactions that a
tool can have on behalf of the knowledge worker for
the task of interest. Direct interactions include edits
to artifacts and selections of artifacts; indirect inter-
actions include predictions and propagations that
cause elements to be added to the interaction history
that have not yet been interacted with directly by the
knowledge worker. Table 1 summarizes the kinds of
interaction events.

Figure 1 shows an example of task context forma-
tion where the knowledge worker is a programmer
working on source code artifacts. As the programmer
works with the source code, interaction history is
captured and is used to produce a task context graph.
The nodes and edges in this graph reference concrete
elements and relations, in this case different kinds of
Java source code declarations (M = method, C = class,
I = interface). As the interaction history is captured,
it is processed and a DOI function assigns a real num-
ber weighting to each element and relation, corre-
sponding to the frequency of access to the element or
relation, less a decay factor that corresponds to the
total number of interaction events processed as part
of that task context. Accessing an element increases
its weight, while accessing other elements decays the
weight of infrequently accessed elements. Value
ranges on the DOI (the y-axis on figure 1) specify
which elements are interesting and uninteresting.
Interesting elements or relationships are those with a
positive DOI value. Uninteresting elements or rela-
tionships are those with a negative or zero DOI val-
ue, which occurs either through decay or because the
element or relation has never been the target of an
interaction. For a knowledge worker using Word doc-
uments and the web, our system will introduce inter-
action events on the document or parts of the web as

opposed to source code elements. The different kinds
of interactions provide different scaled values to the
DOI computation. This introduces the possibility of
tailoring the DOI computation and the resultant task
context to a user. To date, we have not found a need
to alter the scalings for different kinds of events per
user. More details on the computation of DOI and
the scaling factors are available elsewhere (Kersten
and Murphy 2006).

Other interaction events, indirect events, are
placed into the interaction history by the system cre-
ating the task context. Our system currently supports
two forms of indirect events. Propagation events
introduces interaction events for structurally related
elements to an element directly interacted with by
the knowledge worker. For instance, if a programmer
interacts with a method in a Java class, a propagation
event is introduced for all hierarchically related ele-
ments, such as the enclosing Java class or package.
Similarly, a propagation event may be introduced for
a directory enclosing a spreadsheet with which a
knowledge worker interacts. The second kind of indi-
rect event is a prediction event, which describes pos-
sible future interactions our system anticipates the
knowledge worker might perform. For a programmer,
a prediction event might be predicting interest in a
test case that could exercise a changed programming
element. For a knowledge worker, a prediction event
might be a web page referenced by a web page with
which the knowledge worker has directly interacted
that our system predicts will be useful to the knowl-
edge worker. In essence, prediction events are a

means of capturing recommendations within a
knowledge worker’s interaction history.

Representing task contexts as information, name-
ly a sequence of interaction events, makes it possible
to transform the context using straightforward oper-
ations. For example, interaction histories for two
subtasks, T1 and T2, can be composed to form a com-
posite context of an aggregating task, T3, by com-
bining the interaction event sequences of T1 and
T2’s interaction histories. As another example, a task
context may be sliced to meet a particular constraint,
such as showing all elements of information on
which an edit was performed, simply by restricting
the interaction history to the events of interest.

Task-Focused User Interface
Task contexts reduce the friction faced by a knowl-
edge worker performing a task when they are used to
facilitate task switches and to readily locate and use
information pertaining to a task-at-hand. Figure 2
shows an instance of a task-focused user interface
prototype we built. This user interface includes a task
list populated by shared tasks queried from a task
repository, from email, or created by a user locally
(figure 2a); a viewing and editing pane for resources
associated with a task (figure 2c); and a tree view that
provides access to local files, shared files, and web
pages in the task context (figure 2b). In figure 2, a
knowledge worker has activated a task labeled “Sub-
mit a CHI Notes on Mylar” in the rightmost pane, as
indicated by the blue dot. Activating a task is a one-

Articles

36 AI MAGAZINE

Figure 1. Interaction History to Context with DOI.

interest

Interaction history
• Interaction event stream
• Origin, handle, type, date

Context (Core)
• Degree‐of-interest graph
• Degree‐of‐separation scope
• Scaling factors

CC

C

I

I

M

M

M M

click operation that triggers the collection of an inter-
action history to be associated with that task. The
leftmost pane in figure 2, shows the documents and
web pages that have a positive DOI.

A task-focused user interface makes use of several
mechanisms to facilitate the display and manage-
ment of task contexts. Mechanisms can be defined at
the level of an individual view or window that pro-
vides access to information in a task context and
between views or windows as described in table 2.
These mechanisms faciliate multitasking and help a
knowledge worker combat information overload.
The filtering that has been applied to the Project
Explorer pane on the leftmost side of figure 2 enables
the relevant documents and web pages to all appear
on the screen with other documents and web pages
unrelated to the task (that is, with DOI values less
than zero) hidden from view. If the knowledge work-
er is interrupted and switches to work on the “Pre-

pare for Honours Seminar” task, a click of the “Pre-
pare for Honours Seminar” task will close all editors
related to the “Submit a CHI Notes on Mylar” task,
open editors that had been open the last time the
“Prepare for Honours Seminar” task was worked on,
and will refilter and focus the leftmost Project
Explorer pane on those documents and web pages
with positive DOI values for the “Prepare for Hon-
ours Seminar” task. This one-click multitasking
reduces the friction knowledge workers currently
face when trying to switch between tasks.

Other task-focused user interface mechanisms,
such as ranking, have more utility in domains with
highly structured information, such as program-
ming. In the Eclipse Mylyn open source project,
which provides a task-focused user interface for pro-
gramming, ranking is used to ensure that recom-
mendations of code to use in completion are based
on the current task context. Expansion of trees is also

Articles

SUMMER 2015 37

Figure 2. Task-Focused UI for Knowledge Workers.

critical in programming where source code elements
can be deeply nested in hierarchical tree views.

Friction can also be reduced by allowing knowl-
edge workers to collaborate through shared task con-
texts. When two knowledge workers work on the
same task there is often a desire to pass the context
of a task back and forth. A task-focused user interface
can facilitate this sharing by allowing one knowledge
worker to import a task context from another knowl-
edge worker. Once imported, a knowledge worker
can use the mechanisms of the interface to see the
resources the other worker has considered as they
have performed the task and to build upon their col-
leagues’ work.

Using Task Contexts
To understand whether task contexts improve the
flow of a knowledge worker’s activity, we have been
investigating the use in practice of task-focused user
interfaces supporting task contexts. We have focused
on the use of the concept in practice as the critical
questions of interest are the overall impact on a
knowledge worker’s productivity and whether the
contexts capture and model the appropriate relevant
information to a task over time.

We have conducted three specific studies of the use
of task contexts with different populations. In 2005,
we conducted a field study involving 16 program-
mers to investigate whether the use of task contexts
could improve programmer productivity. In 2007, we
conducted a field study involving eight knowledge
workers to investigate whether task contexts provid-
ed utility for knowledge workers dealing with less
structured information than the programmers we
had previously studied. In 2013, we performed a case
study, analyzing the longitudinal use of task contexts
by three operational personnel at the software devel-
opment company with which the authors are princi-

ples. Each of these studies has provided different
insight into the utility and use of task contexts; we
report on each briefly.

Programmer Field Study
The field study of programmers used a within-subject
study design. We were interested in how the use of a
task-focused interface would affect programmer pro-
ductivity as measured by whether programmers edit-
ed more with the help of a task-focused interface. We
used a ratio of the number of edits compared to the
number of selections as a measure of productivity. We
termed this measure the edit ratio. We computed the
edit ratio based on edits and selections of program-
ming artifacts so that interaction with task manage-
ment features provided would not skew the results.

The participants in the study were industry Java
programmers who used the open source Eclipse inte-
grated development environment.3 These partici-
pants were recruited at an industry conference. Of
the 99 programmers who signed up for the study, the
majority of the individuals were industry program-
mers, with about half working in organizations with
more than 50 people and who most identified their
industry sector as software manufacturing.

For the study, the programming of a participant
was monitored automatically until a certain thresh-
old of work, defined to be 1000 edit events over no
less than two weeks. At the end of this period, our
study tools sent us an anonymous interaction histo-
ry for the participant, and the participant was invit-
ed to install our task-focused interface for program-
ming, then called the Mylar project.4 This task-
focused user interface was a version of the Eclipse
integrated development environment augmented
with the same task list as shown in figure 2 and focus
capabilities for all programming views, including the
editor and a hierarchical view of programming ele-
ments. Periodically after starting to use the task-

Articles

38 AI MAGAZINE

Table 2. Task-Focused UI Mechanisms.

Target Mechanism Description

view Filtering Elements below a certain DOI threshold are excluded

view Ranking Elements are ranked or sorted by DOI

view Decoration Foreground or background colour of elements indicates DOI

view Expansion
Management

Auto-expand tree nodes to correspond to a slice of interest. Elide
uninteresting text.

window View Management Auto-apply focusing mechanisms to view on task context activation

window Editor Management Auto-close editors corresponding to uninteresting elements

window Perspective
Management

Auto-restore views associated with a context on activation

focused interface, the study tools would prompt par-
ticipants to upload their interaction history to us. Of
the 99 participants who started the study, only 16
met the thresholds of activity we set to be considered
as a study participant.

For the 16 participants who programmed regular-
ly in both the before and after-task focused interface
periods, we compared their edit ratio before and after
use of the task-focused user interface using a paired t-
test. We found that the use of the task-focused inter-
face increased the edit ratio of participants with sta-
tistical significance. From the viewpoint of this
measure, the task-focused interface did improve pro-
grammer productivity.

We also wanted to know if the context of pro-
grammers’ tasks was captured accurately. A qualita-
tive analysis of the task contexts formed by the pro-
grammers showed that 84 percent of the selection
events recorded were on elements with a positive
DOI, 5 percent of the selection events were of ele-
ments with a propagated or predicted interest, and
only 2 percent were of elements with a negative DOI.
The high rate of selection of elements with a positive
DOI and low rate of selection of elements with a neg-
ative DOI suggests that the contexts were capturing
much of the desired information for working on a
task and that the appropriate information was stay-
ing modeled in the task context.

Knowledge Worker Field Study
In a 2007 field study of a more general class of knowl-
edge workers, we wanted to gain knowledge about
three questions: (1) do knowledge workers find it use-
ful to create contexts for their tasks that mix file and
web documents, (2) do these knowledge workers
revisit tasks, and (3) does the DOI function serve to
keep the relevant information in a knowledge work-
er’s task context?

For this study, given the early nature of the tool
encompassing the task-focused interface, we targeted
knowledge workers within and related to the Univer-
sity of British Columbia. This recruitment resulted in
eight participants who installed the tool shown in
figure 2 on their work computer and who answered
usage questions through email and in person: P1
(technology assessment), P2 (master’s student), P3
(teacher), P4 (instructor), P5 (CEO), P6 (project coor-
dinator), P7 (student coordinator), and P8 (commu-
nications coordinator).

Participants were asked to use the tool in their dai-
ly work as they saw fit. The tool required them to
define tasks using a name for each task and to access
their file system and web pages through the tool. The
average number of workdays for which the partici-
pants used the tool was 10.8 days (± 9.8). The average
tasks worked on per day was 3.1 (± 1.54) and the aver-
age activations per day was 5.5 (± 3.4). For all but one
participant, more tasks were activated per day than
tasks worked on per day indicating that participants

returned to tasks on which they had worked earlier
that day. This data suggests that subjects do revisit
tasks and that they use task contexts for the purpose
of restoring context when multitasking.

We analyzed the task contexts resulting from the
participants interaction with documents and web
pages. Six participants had task contexts that mixed
document access with web pages. The average num-
ber of web pages in a context varied dramatically
across users from an average of 3 web pages to an
average of 69. The average number of files also var-
ied dramatically from an average of none to an aver-
age of 68. Six of the participants generated enough
interaction to result in substantial decay in their web
documents, while five participants experienced
decay in their file documents. The high-values of
decay (over 20 percent for most participants) indi-
cates the need to weight the relevance of elements in
the context to avoid overloading the user with infor-
mation. We asked each participant if the task con-
texts showed too much information (three partici-
pants), too little information (two participants), or
just the right information as they worked (three par-
ticipants).

From this study, we found that knowledge workers
do want to include both documents and web pages
from their information space in a task context, that
the knowledge workers revisit tasks, and that the
DOI functions does serve to retain relevant informa-
tion while removing irrelevant information from the
view of a task context.

Knowledge Worker
Longitudinal Field Study
To provide insight into the nature of task contexts
over a longer usage period, we performed a study of
the use of task-focused interfaces to run the opera-
tions of a software company of which the authors are
cofounders. In this organization, a shared task repos-
itory is used to communicate and collaborate about
many aspects of business operations, including
aspects of sales, business development, finance,
human resources, marketing, and general adminis-
tration. At the time of analysis, the shared task repos-
itory was operational for three years and eight
months and hosted 8402 tasks of which 5707 (70.9
percent) were marked as completed. The average
number of comments left on tasks as people collab-
orated was 8.14 ± 13.63. In this shared task reposito-
ry, 2404 (28.6 percent) of the tasks had some sharing
of files and web documents between users; this per-
centage does not include artifacts captured as con-
texts personally by individuals.

We selected a convenience sample of three indi-
viduals using this shared task repository, including
one author of this article. These individuals were
using a version of the Eclipse Mylyn open source
tooling tailored to knowledge workers similar to the
tool shown in Figure 2. The main difference between

Articles

SUMMER 2015 39

the tool used by these individuals and the tool used
in the earlier knowledge worker study was more sup-
port for tracking detailed parts of information arti-
facts, such as parts of web pages. We analyzed data
collected as these individuals worked over periods
ranging from just over 300 to almost 600 days. We
found that the maximum number of task activations
per day ranged between 16 and 24. The average num-
ber of task reactivations per day was between 3 and 4
and the maximum number of task reactivations
across the period was between 85 and 148.

From an analysis of the task contexts associated
with these individuals’ work, we found that the aver-
age number of files per context exceeded the average
interesting files per context, suggesting decay was
effective in trimming the size of an individual’s task
context. We saw a similar trend for the web pages ref-
erenced as part of a task context.

From this study, we can see that tasks are revisited
substantially over time and that the contexts formed
for a task are used by knowledge workers. We also
learned there is a need for models of task context to
automatically trim the contents of the task context
and reflect a knowledge worker’s current needs.

Beyond Task Contexts
Task contexts provide a full history of the interaction
with a task. When considered alongside the rich his-
tory of documents that are often maintained through
version repositories, shared file systems, and the like,
there arises the possibility of rewinding both task
context and artifact state concurrently, enabling a
knowledge worker to easily return to a previous state
in their work history. In essence, such a facility could
be used to rewind to a previous activity state of a
knowledge worker.

To date, we have provided and experimented with
situations in which one task can have multiple task
contexts at different points in time contributed by
different individuals, but tasks do not share task con-
texts. At times, users of our tools have requested the
ability to allow task contexts to refer to other tasks
and their associated contexts. For example, if task A
has subtasks B and C, the context of task A could be
the composite of task B and C. Support for cascading
task contexts along such relationships would sub-
stantially change our treatment in the tools of task
contexts. Instead of a task context being a snippet of
one user’s interaction history, a task context could be
identified by a set of spans of an interaction history
and relations to other such spans. Activating a task
could then involve swapping in the corresponding
segments of interaction. Such a facility would further
support rewinding interaction (and hence activity)
across one or more tasks.

More recently, in a commercial context, we have
been gaining experience with the representation of
tasks, communication activity, and artifacts across

many different repositories serving many different
kinds of knowledge workers. This exposure has
helped us refine our model for representing task and
task context information. We see artifacts as playing
more than one role in any larger schema describing
tasks and their context. In particular, artifacts and
their versions need to be more strongly modeled as
parts of tasks at different points in time with task
contexts referring to these different versions.

Our work to date has focused on the representation
of task context once a task is indicated by the user.
Future directions to investigate include the automat-
ic determination of task boundaries and the integra-
tion of user goals within a task to task context infor-
mation. Work in activity recognition that can
consider the structure of user goals may be helpful in
improving the representation and population of task
contexts (Natarajan et al. 2008) and in enhancing
task-focused user interfaces with additional inference
features.

Summary
There is no lack of information available to knowl-
edge workers today. Although current tools make it
easy for knowledge workers to browse and query the
information space with which they must work, these
tools do not support a knowledge worker in manag-
ing the information needed for the tasks the worker
performs. Proper and easy management of informa-
tion relevant to tasks is needed given the high veloc-
ity with which knowledge workers switch tasks.
Without appropriate support, knowledge workers are
burdened with repeatedly creating and recreating the
context they need to get work done.

We have found that the task-focused interface that
leverages knowledge workers’ episodic memory to
form and recall tasks along with a model for task con-
text based on the knowledge workers’ interaction and
activity can provide a means to reduce the friction
and improve the flow of knowledge work.

Acknowledgements
This work was supported in part by IBM CAS, NSERC
and Tasktop Technologies. We thank the participants
in the studies and the Eclipse Mylyn community for
their ongoing input.

Notes
1. Merriam-Webster’s Collegiate Dictionary, 2003.

2. eclipse.org, verified 11/22/13

3. eclipse.org, verified 11/22/13

4. This interface was put into open source as the first version
of the Eclipse Mylyn project.

References
Belotti, V.; Ducheneaut, N.; Howard, M.; and Smith, I. 2003.
Taking Email to Task: The Design and Evaluation of a Task

Articles

40 AI MAGAZINE

Management Centered Email Tool. In Proceedings of the 2003
ACM SIGCHI Conference on Human Factors in Computing Sys-
tems, 345–352. New York: Association for Computing
Machinery.

Card, S., and Henderson, D. 1987. A Multiple, Virtual-Work-
space Interface to Support User Task Switching. In Proceed-
ings of the 1987 ACM SIGCHI Conference on Human Factors in
Computing Systems, 53–59. New York: Association for Com-
puting Machinery.

Dourish, P. 2004. What We Talk About When We Talk Con-
text. Personal and Ubiquitous Computing 8(1): 19–30.
dx.doi.org/10.1007/s00779-003-0253-8

Dourish, P.; Edwards, K.; LaMarca, A.; and Salisbury, M.
1999. Using Properties for Uniform Interaction in the Presto
Document System. In Proceedings of the 12th Annual ACM
Symposium on User Interface Software and Technology, 55–64.
New York: Association for Computing Machinery.
dx.doi.org/10.1145/320719.322583

Dragunov, A.; Dietterich, T.; Johnsrude, K.; McLaughlin, M.;
Li, L.; and Herlocker, J. 2005. Tasktracer: A Desktop Envi-
ronment to Support Multi-Tasking Knowledge Workers. In
Proceedings of the 10th International Conference on Intelligent
User Interfaces, 75–82. New York: Association for Computing
Machinery.

Gonzales, V., and Mark, G. 2004. Constant, Constant, Mul-
ti-Tasking Craziness: Managing Multiple Working Spheres.
In Proceedings of the 2004 ACM SIGCHI Conference on Human
Factors in Computing Systems, 113–120. New York: Associa-
tion for Computing Machinery. dx.doi.org/10.1145/
985692.985707

Kaptelinin, V. 2003. UMEA: Translating Interaction Histo-
ries into Project Contexts. In Proceedings of the 2003 ACM
SIGCHI Conference on Human Factors in Computing Systems,
353–360. New York: Association for Computing Machinery.

Kersten, M., and Murphy, G. C. 2006. Using Task Context to
Improve Programmer Productivity. In Proceedings of the 14th
ACM SIGSOFT International Symposium on the Foundations of
Software Engineering, 1–11. New York: Association for Comput-
ing Machinery.

Kersten, M., and Murphy, G. 2012. Task Context for Knowl-
edge Workers. In Activity Context Representation: Tech-
niques and Languages: Papers from the 2012 AAAI Work-
shop. Technical Report WS-12-05. Palo Alto, CA: AAAI
Press..

Lettkeman, A.; Stumpf, S.; Irvine, J.; and Herlocker, J. 2006.
Predicting Task-Specific Webpages for Revisiting. In Proceed-
ings of the 21st AAAI Conference on Artificial Intelligence, 1369-
1374. Menlo Park, CA: AAAI Press.

Natarajan, S.; Bui, H. H.; Tadepalli, P.; Kersting, K.; and
Wong, W.-K. 2008. Logical Hierarchical Hidden Markov
Models for Modeling User Activities. In Inductive Logic Pro-
gramming, Lecture Notes in Computer Science volume 5194,
192-209. Berlin: Springer. dx.doi.org/10.1007/978-3-540-
85928-4_17

Plotnik, R. 2004. Introduction to Psychology. San Francisco:
Wadsworth Publishing Company.

Rattenbury, T., and Canny, J. 2007. CAAD: An Automatic
Task Support System. In Proceedings of the 2007 ACM SIGCHI
Conference on Human Factors in Computing Systems, 687-696.
New York: Association for Computing Machinery.
dx.doi.org/10.1145/1240624.1240731

Snowden, J. 1996. Semantic-Episodic Memory Interactions
in Semantic Dementia: Implications for Retrograde Memo-

ry Function. Cognitive Neuropsychology 13(8): 1101–1139.
dx.doi.org/10.1080/026432996381674

Mik Kersten is chief executive officer and cofounder of
Tasktop Technologies, creator and lead of the Eclipse Mylyn
open source project, and the inventor of the task-focused
interface. His goal is to create the collaborative infrastruc-
ture needed to connect knowledge workers in the new
world of software delivery. He earned his Ph.D. in comput-
er science from the University of British Columbia.

Gail C. Murphy is a professor in the Department of Com-
puter Science and associate dean (research and graduate
studies) at the University of British Columbia. She is a
cofounder and currently chief scientific officer of Tasktop
Technologies. Her research interests are in improving the
productivity of software developers and knowledge work-
ers by giving them tools to identify, manage, and coordi-
nate the information that really matters for their work. She
earned her Ph.D. in computer science and engineering from
the University of Washington.

Articles

SUMMER 2015 41

