
Articles

22 AI MAGAZINE

The ubiquity of multicore processors provides an oppor-
tunity to speed up all computationally expensive algo-
rithms. Any algorithm that can be parallelized can

make use of the available multiple cores to drive down its
overall run time. However, the use of the kind of bounded
parallelization available in these architectures has not been
closely studied for most AI applications. Even with the ubiq-
uity of libraries and packages supporting multithreading,
most AI research has not focused on efforts to parallelize spe-
cific AI algorithms. We believe this is a result of two issues.

First, the processing performed by many AI algorithms is
not obviously parallelizable and can require significant effort
to make it so. For example, naive implementations of AI
planning based on regression or progression search are diffi-
cult to parallelize. In most algorithms the search for a plan
can arrive at the same world state by multiple search paths.
This information must be maintained and shared between
the parallel processing threads. To do this can require non-
trivial restructuring of the algorithm.

Second, even given an algorithm that is easily amenable to
parallelization, and given a desire to implement it, there is a
question of how to apportion work to the various threads to
gain maximum benefit. There are multiple algorithms for
making this choice, and trade-offs between the cost of the
additional code to support the threading and work allocation
decisions. The efficacy of any particular method can best be
evaluated empirically. This may necessitate multiple rounds
of implementations and experimentation. That said, algo-
rithms that are well suited to this kind of bounded paral-
lelism could benefit from a better understanding of the trade-
offs required to make full use of easily obtainable modern
computer architectures.

Copyright © 2015, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Parallelizing
Plan Recognition

Christopher W. Geib, Christopher E. Swetenham

� Modern multicore computers provide
an opportunity to parallelize plan-recog-
nition algorithms to decrease run time.
Viewing plan recognition as parsing
based on a complete breadth first
search, makes ELEXIR (engine for lexi-
calized intent recognition) (Geib 2009,
Geib and Goldman 2011) particularly
suited for parallelization. This article
documents the extension of ELEXIR to
utilize such modern computing plat-
forms. We will discuss multiple possible
algorithms for distributing work
between parallel threads and the associ-
ated performance wins. We will show
that the best of these algorithms pro-
vides close to linear speedup (up to a
maximum number of processors), and
that features of the problem domain
have an impact on the achieved
speedup.

Articles

SUMMER 2015 23

This article presents experimental results on the
parallelization of a particular algorithm for the AI
problem of plan recognition, namely the engine for
lexicalized intent recognition (ELEXIR) system (Geib
2009, Geib and Goldman 2011). It will show that this
algorithm can easily be parallelized to produce close
to linear speedup if the correct method for work allo-
cation is chosen. The article will also show that spe-
cific features of the domain can have a significant
impact on the achieved speedup.

The remainder of this article is organized as fol-
lows. First we will provide some background followed
by an overview of the ELEXIR system and discuss the
features of the algorithm that make it particularly
well suited to parallelization. Next we will discuss
four different algorithms for allocating work between
the different processing threads and their respective
strengths and weaknesses. We will then present the
results of testing these allocation algorithms in mul-
tiple domains and discuss the impact of various
domain-level features that can affect even the paral-
lelized algorithm’s performance. Finally we will draw
conclusions that are applicable both to other plan-
recognition systems, as well as AI systems more
broadly.

ELEXIR Background
Plan recognition is the process of inferring the plan
being executed by an agent based on observations of
the agent’s actions and a library of plans to be recog-
nized. It is worth distinguishing plan recognition
from activity recognition (Liao, Fox, and Kautz
2007). In general, the objective of activity recogni-
tion is to produce a labeling of a sequence of obser-
vations. For example imagine that we have a stream
of video. Generally, the objective of activity recogni-
tion is the labeling of each frame of the video with an
unstructured identifier that indicates the single
action that is being done in that frame.

As a result, activity recognition often focuses on
dealing with sensor noise in the environment. As
such, methods and algorithms that have been suc-
cessful at recognizing structure in noisy sensor
streams like HMMs (Modayil, Bai, and Kautz 2008),
CRFs (Liao, Fox, and Kautz 2007; Vail and Veloso
2008), and DBNs (Hoogs and Perera 2008) have been
very successful at activity recognition.

Plan recognition, in contrast, is about combining
the actions indicated by such labelings into more
complex structures that capture the larger plans
being executed. Generally if a plan has temporal
extent and multiple substeps, plan recognition is
interested in identifying where in the execution of
the plan the agent is and those actions that are like-
ly to be executed next.

In contrast, plan recognition is fundamentally
about combining low-level observations into larger
structures, that is, recognizing and building new

structure. This has resulted in a different set of tools
being used. For example: abstract HMMs (Bui,
Venkatesh, and West 2002), graph covering algo-
rithms (Kautz and Allen 1986), and even parsing
(Vilain 1991, Geib 2009) have all been successfully
used to do plan recognition. With this in mind, plan
recognition and activity recognition can be seen as
playing very different, but complimentary roles, with
plan recognizers taking as input the activities gener-
ated by activity recognition algorithms.

With this said, this work falls squarely in the area
of plan recognition. Following other work on gram-
matical methods for plan recognition (Sidner 1985;
Vilain 1990, 1991), ELEXIR (Geib 2009, Geib and
Goldman 2011) views the problem as one of parsing.
That is, like natural language processing (NLP) in
which a formal grammar specifies those sequences of
words that form acceptable sentences of the lan-
guage, we could imagine defining an action grammar
that describes the set of all plans to be recognized.
Recognizing a single plan can then be viewed as
deriving a single parse for the sequence of observa-
tions based on the formal grammar for the plans.

To do complete probabilistic plan recognition we
can view the problem as weighted model counting
based on the possible parses. Each parse is viewed as
an explanatory model or explanations for the
observed actions. If we build a complete and covering
set of such explanations we can then establish a prob-
ability distribution over this set to provide each
explanation with a weight. On the basis of the prob-
ability distribution we can then compute the proba-
bility of any particular goal or plan structure by sum-
ming the probability mass of those explanations that
contain it.

An obvious first reaction to this proposal is that
computing the complete and covering set of all pars-
es for the action grammar could be a very computa-
tionally expensive process. In our experience, there
are a number of ways to reduce the number of parses
that need to be generated, making this a viable
approach for real-world application. However, for
some domains, the number of possible parses is nec-
essarily quite large, and this was one of the prime
motivators for exploring the possibilities for paral-
lelizing ELEXIR.

Note that in order for the weighted model count-
ing approach to be easy to parallelize two things
must be the case. First, it must be easy to parallelize
the parsing of the observations into explanations.
Second, computing the probability distribution must
be easy to parallelize. For the grammar formalism
that we have chosen and the probability model that
we use both of these are true. In the following two
sections we will discuss the details of the grammar
and the probability models for ELEXIR.

ELEXIR Plan Grammars
In ELEXIR, plans are represented using combinatory

Articles

24 AI MAGAZINE

Figure 1. Three Different Grammars for the Plan of Using a Cell Phone.

a. CCG: 1. b. CCG: 2. c. CCG: 3.

CCG: 1
dialCellPhone := (CHAT/{T})\{G}.
 talk := T.
getCellPhone := G.

CCG: 2
dialCellPhone := D.
 talk := (CHAT\{D})\{G}.
 getCellPhone := G.

CCG: 3
 dialCellPhone := D.
talk := T.
getCellPhone := (CHAT/{T})/{D}.

categorial grammars (CCGs) (Steedman 2000), one of
the so-called lexicalized grammars (Schabes 1990).
Lexicalized grammars are a relatively recent develop-
ment in NLP. In lexicalized grammars, all language-
specific information is moved into rich data struc-
tures called categories. The grammar’s lexicon
associates with each terminal symbol a set of such
categories. Lexicalized grammars then use a small set
of language-independent rules called combinators to
combine lexical categories to produce a parse of the
sequence of tokens into a complete sentence.

Thus, parsing in such grammars abandons the tra-
ditional search through the space defined by the
application of multiple formal grammar rules.
Instead parsing is viewed as a search defined by the
category chosen for each terminal symbol and the set
of combinators used to combine categories to build
the parse.

For an action grammar the only significant differ-
ence is that the terminal symbols denote observable
actions as opposed to words in NLP. In the following
we will use the more general term observable to
denote the terminal symbols of the grammar.

In CCGs, the categories that each observable is
associated with are defined recursively as atomic or
complex categories.

Atomic categories: A finite set of basic action categories.
C = {A, B, …}.

Complex categories: ∀Z ∈ C, and nonempty set {W, X,
…} ⊂ C then
Z\{W, X, …} ∈ C and Z/{W, X, …} ∈ C.

Like the observable actions they are associated with,
each category can be thought of as a function. Basic
categories are functions that take no arguments,

while the slash in complex categories separates the
arguments ({W, X, …}) on the right side of the cate-
gory from the result (Z) on the left side. The direction
of the category’s slash indicates where in a stream of
observations the category looks for its arguments.
That is, the argument(s) to a complex category
should be observed after the category for a rightward
slash and will be called rightward arguments. The
arguments for a complex category with a leftward
slash (leftward arguments), should be observed
before it, to produce the result. Finally, if a category
has multiple arguments within a set braces, they are
treated as unordered with respect to each other.

As an example, consider the simple three-step plan
of picking up a cell phone, dialing a number, and
talking on it. This plan could be represented by the
grammar in figure 1a. Where G, T, and CHAT are basic
categories, the actions of talk and getCellPhone each
have only a single possible category, namely T and G,
and the action dialCellPhone has a single complex cat-
egory that captures the structure of the plan for chat-
ting to a friend.

Lexicalized plan grammars also require a design
decision about which actions should carry which
parts of the structural information for a plan. In
CCG: 1 the dialCellPhone action was chosen to have
a category that had most of the structure needed to
recognize the plan for CHAT. We will call an action
that has a particular category as its result an anchor
for a plan to achieve that category. For example in
CCG: 1 dialCellPhone is the anchor for the plan to
CHAT.

In the design of the grammar we could have made
other choices. For example, in CCG: 2 and CCG: 3 we
see what the grammar would have looked like if we
had chosen talk or getCellPhone as the anchor for
CHAT. This would have resulted in a different set of
categories (note the introduction of the category D)
and a different resulting lexicon (figure 1b).

The anchors chosen for a particular grammar can
have a significant impact on the run time of plan
recognition (Geib 2009). Some choices for the
anchors result in a smaller number of possible parses.
We will return to discuss this later.

Combinators
ELEXIR uses three combinators (Curry 1977) defined
over pairs of categories, to combine CCG categories:

where X and Y are categories, and α and are possi-
bly empty sets of categories. To see how a lexicon and
combinators parse observations into high-level plans,
consider the derivation in figure 2 that parses the

rightward application

X / {Y }, Y X /

leftward application

Y ,X\ {Y } X\

rightward composition

X / {Y }Y / X /

Articles

SUMMER 2015 25

Figure 2. Parsing Observations with CCG Categories.

Figure 3. CCG: 4.

getCellPhone dialCellPhone talk
G (CHAT/{T})\{G}

CHAT/{T}
T

<

>
CHAT

Fi 3 CCG 4

CCG: 4
dialCellPhone := (CHAT/{T})\{G}. acceptable
dialCellPhone := (CHAT\{G})/{T}. unacceptable

observation sequence: getCellPhone, dialCellPhone,
talk using CCG: 1. As each observation is encoun-
tered, it is assigned a category as defined by the plan
grammar. Combinators then combine the categories
to produce explanations. In this example, leftward
application of the categories for dialCellPhone and get-
CellPhone is used first to produce CHAT/ {T}. Right-
ward application then combines it with T to produce
a complete parse for a plan to CHAT. We will discuss
the details of the parsing algorithm that does this
next.

ELEXIR Parsing Algorithm
To enable incremental parsing of multiple inter-
leaved plans, ELEXIR does not use a preexisting pars-
ing algorithm from NLP. Instead it uses a very simple
two-step algorithm based on combinator application
linked to the in-order processing of each observation
and a restriction on the form of complex categories.

Assume we are sequentially observing the actions
of an agent, and further suppose that the observed
agent is actually executing a particular plan whose
structure is captured in a category that we are con-
sidering assigning to the current observation. In this
case, it must be true that all of the leftward argu-
ments to the category have already been performed.
For example, in the cell-phone usage case, we must
have observed the action of getting the cell phone
before the dialing action, otherwise it is nonsensical
to hypothesize the agent is trying to chat with a
friend.

To facilitate this check, ELEXIR requires that all
leftward arguments be on the outside (further to the
right when reading the category from left to right) of
any rightward arguments the complex category may
have. For example (figure 3), this rules out reversing
the order of the arguments to dialCellPhone in our
example CCG: 1.

We call such grammars leftward applicable. This
does not make a difference to the plans captured in
the CCG, as the arguments are still in their correct
causal order for the plan to succeed. However, this
constraint on the grammar mandates that leftward
arguments must be addressed first. In fact, account-
ing for a categories leftward arguments is the first step
of ELEXIR’s two-stage parsing algorithm.

The restriction to leftward applicable grammars
allows ELEXIR’s parsing algorithm easily to verify
that an instance of each of the leftward arguments
for a category has previously been executed, by the
agent, at the time the category is considered for addi-
tion to the explanation. If a category being consid-
ered for addition has a leftward argument that is not
already present in the explanation (and therefore
can’t be applied to the category), ELEXIR will not
extend the explanation by assigning that category to
the current observation, since it cannot lead to a
legitimate complete explanation.

Thus, for each category that could be assigned to

the current observation, the first step of the parsing
algorithm is to verify and remove, by leftward appli-
cation, all of its leftward arguments. This is done
before the category is added to the explanation. This
means that the explanation is left with only cate-
gories with rightward arguments. Further, since none
of the combinators used by ELEXIR produce leftward
arguments, for the remainder of its processing the
algorithm only needs to consider rightward combi-
nators. This feature enables the second step of the
ELEXIR parsing algorithm.

After each of the possible applicable categories for
an observation have been added to a fresh copy of
the explanation, ELEXIR attempts to apply the right-
ward combinators to every pairing of the new cate-
gory with an existing category in the explanation. If
the combinator is applicable, the algorithm creates
two copies of the explanation, one in which the
combinator is applied, and one in which it is not. As
a result, each rightward combinator can only ever be
applied once to any pair of categories. This is done so
as not to force the combination of categories in case
they are needed for application or composition with
a category for an observation that has yet to be seen.

This two-step algorithm both restricts observa-
tions to take on only categories that could result in a
valid plan, and guarantees that all possible categories
are tried and combinators are applied. At the same
time, it does not force unnecessarily eager composi-
tion of categories that should be held back for com-
bination with an as yet unseen category.

The algorithm we have just discussed allows
ELEXIR to build the complete and covering set of

explanations for an observed stream of actions given
a particular grammar. To compute the conditional
probability for any particular goal it then needs to
compute a probability distribution over this set. In
the next subsection we discuss the construction of
the probability of each explanation and, on the basis
of this distribution, the conditional probability of
any individual goal or plan.

ELEXIR Probability Model
Traditionally in probabilistic plan recognition the
objective is to compute the conditional probability
for all of the possible root goals (Charniak and Gold-
man 1993). In weighted model counting, given that
we can compute the exclusive and exhaustive set of
explanations and that we can compute the condi-
tional probability of each explanation, then the con-
ditional probability for any given goal is given by the
following formula:

Definition 1.1

where P(expi|obs) is the conditional probability of
explanation expi given the set of observations, obs.
The conditional probability for the goal is just the
sum of the probability mass associated with those
explanations that contain the goal of interest.

Note this relies on (1) an exclusive and exhaustive
set of explanations for the observations, and (2)
being able to compute the conditional probability for
each explanation, knowing there will be no more
observations.

The Probability of an Explanation
While there are a number of different probability
models used for CCG parses in the NLP literature
(Hockenmaier 2003, Clark and Curran 2004) we will
extend a particularly simple one described by Hock-
enmaier (2003). For an explanation, exp, of a
sequence of observations, σ1 … σn, that results in m
categories in the explanation, we define the proba-
bility of the explanation as:

Definition 1.2

Where ciniti represents the initial category assigned
in this explanation to observation σi, root(cj) repre-
sents the root result category of the jth category in
the explanation, and K is the constant product of the
probability of each possible goal not being in the
explanation. We provide motivation for these terms
in this definition in turn.

The first product represents the probability of the
given observations actually having their assigned
CCG categories. This is standard in NLP parsing and

P(goal | obs) = P
{expi|goal�expi }

� (expi | obs)

P(exp | {� 1...� n }) = P
i=1

n

� (ciniti |� i) P
j=1

m

� (root(cj))K

assumes the presence of a probability distribution
over the possible categories to which a given obser-
vation can be mapped. In NLP such probabilities are
usually learned using large corpora of parsed text
(Clark and Curran 2004). We note that ELEXIR
allows the conditioning of this distribution based on
the state of the world at the time the action is exe-
cuted. Space constraints prevent providing a full
exposition of ELEXIR’s state model, but it does pro-
vided a facility to choose a distribution based on the
state of the world at the time the action is executed.

The second product (and its associated constant)
captures the probability that each category will not
be part of a larger plan but instead represents a sepa-
rate plan instance. This is not a part of traditional
NLP models for two reasons. First, in NLP it makes
no sense to consider the probability of multiple
interleaved sentences. Second, in most NLP contexts
the observations are known to be a whole sentence.
Usually parsed text contains punctuation marks
indicating sentence boundaries. In this setting it
makes little sense to consider the probability that the
sequence is anything but a single complete sentence.

However these assumptions do not hold for plan
recognition. It is more than possible for a given
sequence of observations to contain multiple inter-
leaved plans of varying lengths, or to cover only frag-
ments of multiple plans being executed (consider a
set of multiday plans).

To address this we take the position that any
action could be done for its own sake. Much prior
work in plan recognition assumes a small distin-
guished set of acceptable goals. Instead, ELEXIR
assumes that it is acceptable for any given action to
be a root goal and to be executed by itself without
regard to a more complex goal. Therefore, ELEXIR
must be given a prior probability for each atomic cat-
egory as a root goal. We would again note that
ELEXIR actually allows the domain designer to con-
dition the root probabilities based on the state of the
world. In this case the conditioning must be done
based on the initial state of the world. Again space
constraints prevent a full exposition of ELEXIR’s
state model.

However such priors are not enough. To under-
stand the second term in the above definition, we
denote the set of all values of root(cj) for a given
explanation, as goals (leaving the explanation
implicit) and denote the probability of this particu-
lar set of categories being adopted as root goals as
P(goals). We also make the simplifying assumption of
an independent prior for each category being a root
goal. We represent the probability of an agent adopt-
ing a category c as a root goal as P(c) with each goal
instance being chosen (or rejected) independently.

ELEXIR allows for multiple instances of a given
category in goals (it is acceptable for root(ci) = root(cj)
where i ≠ j). To do this, each goal is sampled as a geo-
metric distribution. P(c) represents the probability

Articles

26 AI MAGAZINE

Articles

SUMMER 2015 27

that category c is a root goal in the explanation, and
we keep sampling to see if there are more root
instances of c. This means P(c)n(1 – P(c)) represents
the probability that there will be exactly n root
instances of category c in an explanation. This is
almost certainly an overestimate — intuitively the
probability of multiple instances of a single goal
decreases far more rapidly than this. Exploring more
sophisticated models for this is an area for future
research.

Assuming |goalsc| represents the number of root
instances of category c in the explanation:

Collecting all of the 1 – P(c) terms:

Now, the second term is a product over all the cate-
gories in the lexicon, and therefore a constant across
all explanations and can be replaced with a constant
K.

Rewriting in terms of the instances in the explana-
tion yields the term seen in equation 1.2.

With this understanding of ELEXIR’s algorithm
and probability model we can now discuss the fea-
tures that make it amenable to parallelization.

Parallelizing ELEXIR
ELEXIR’s parsing algorithm not only makes effective
use of the categories structure to reduce the search
space, it also effectively creates a canonical ordering
for the generation of explanations. This is what
makes the ELEXIR algorithm particularly amenable
to parallelization.

ELEXIR uses its two-step parsing algorithm to
search the space of all possible explanations for the
observed actions. Given the algorithm, any two
explanations must differ either in the category
assigned to an observed action, or in the combina-
tors that are applied. It is not possible for two expla-
nations that have been distinguished either by the
addition of different categories or the application of
different combinators to result in the same explana-
tion for the observations. Note, this does not mean
that the system can only find a single explanation for
a plan given a set of observations, but that each such
plan will differ either in which observed actions are
part of the plan, the categories assigned to the con-

P(goals) = P
c�goals

� (c)|goalsc |(1� P(c)) (1� P(
c /�goals

� c)).

P(goals) = P
c�goals

� (c)|goalsc | (1� P(
�c�C

� c))

P(goals) = P
c�goals

� (c)|goalsc |K

P(goals) = P
j=1

m

� (root(cj)K

stituent observations, or the subplans composed to
produce it. These are all significantly different expla-
nations and need to be considered by the system. As
such, each addition of a category to an explanation
or the use of a combinator splits the search space into
complete and nonoverlapping subsearches. Such sub-
searches do not depend on their sibling searches and
can therefore be parallelized.

To summarize then, given the requirement of left-
ward applicable plan grammars, the two-step parsing
algorithm used by ELEXIR splits the search for expla-
nations into nonoverlapping subsearches. Each such
search can be treated as separate unit of work that can
be done in parallel, with the complete set of expla-
nations being collected at the end.

We also note that the probability for each expla-
nation can be computed in parallel. This computa-
tion depends only on the categories chosen for each
observation and the set of root result categories in the
explanation. The first of these can be maintained as
the building of the explanation is performed. The
second of these can be computed in a single pass over
the explanation after the explanation has been built.
It is only the final computation of the conditional
probabilities for each individual goal that requires
access to the complete set of explanations.

Implementing Parallelization
Given a method to break up the search for explana-
tions into disjoint subsearches, parallelization of the
algorithm still requires answers to the question: How
will the work be scheduled for performance? Effec-
tively scheduling work for execution across multiple
threads means keeping all the available threads busy
with work while satisfying the dependencies between
units of work. The unit of work scheduling may also
not directly correspond to a single subtask of the
underlying problem. We could decide to batch sever-
al subtasks together to form a single work unit for
scheduling. This means choosing the size of work
units requires making a trade-off between the over-
head of scheduling and the effectiveness of the work
distribution. For example, in the limit, scheduling all
the subtasks as one unit of work will give no multi-
threading at all. We will see that the methods we
investigated differ in the overhead of scheduling each
unit of work, and in how effectively they keep
threads busy.

To parallelize ELEXIR, we first modified the algo-
rithm to ensure the search could safely proceed across
multiple threads. In our C++ implementation of
ELEXIR, we replaced the standard memory allocator
with the jemalloc allocator,1 which is designed for
multithreaded applications, has much better con-
tention and cache behavior, and showed much better
speedups with larger numbers of threads in ex -
ploratory test experiments.

We then implemented four different scheduling

policies to allocate the work to be performed across
available hardware threads and compared these
against the baseline run time of the original single-
threaded algorithm. All implementations, other than
the baseline, were built to be configurable in the
number of worker threads.

Some of our policies have the main thread distrib-
ute work to the worker threads, in which case the set
of explanations after each observation is collected
and redistributed to threads on the next observation.
The others have the worker threads pull work when
they are otherwise idle. This means these schedulers
do not need to have all the worker threads complete
their work and fall idle after each observation but can
instead keep all threads working until all the obser-
vations have been processed. We will highlight these
distinctions for each of the five implemented policies
next.

First, the baseline implementation is the original
implementation, albeit with the thread-safety guar-
antees in place. This involved ensuring the reference-
counting implementation used for releasing memory
was thread safe, and guaranteeing that the shared
data structures used were not modified for the dura-
tion of the search.

Second, the naive scheduler (Herlihy and Shavit
2012) implementation is a proof of concept for mul-
tithreading the algorithm; it spawns a new thread for
each unit of work to be scheduled, and the thread is
destroyed when the unit of work is completed. For
each observation, one unit of work is produced for
each thread, and the set of explanations is shared
equally between units of work.

Third, the blocking scheduler (Herlihy and Shavit
2012) gives each worker thread a queue, and the
main thread distributes work to these queues on each
observation. Threads can block on an empty work
queue instead of repeatedly having to check the
queue. As in the naive scheduler, explanations are
redistributed equally among threads on each new
observation.

Fourth, the global queue (Herlihy and Shavit 2012)
scheduler uses a single multiple-producer, multiple-
consumer work queue shared between all the threads
and guarded by mutex at both ends. Worker threads
push new work into this queue as they produce new
explanations and fetch work from this queue when
they fall idle. This policy has a second configurable
parameter, the batch size, which specifies the maxi-
mum number of explanations to be added to a unit
of work to be scheduled. The larger the batch size, the
fewer units of work we need to schedule when pro-
cessing, but the more potential there is for missed
parallelism due to underutilization. By measuring the
run time with different batch sizes, We determined a
batch size of 32 to be adequate, although larger val-
ues may be preferable for large problems.

Fifth and finally, the work-stealing (Blumofe and
Leiserson 1999) scheduler gives each worker thread a

queue. When worker threads produce new explana-
tions, they schedule new work units into their own
queue, and threads that run out of work can steal
work from other threads’ queues. We implemented a
lockless work-stealing queue due to Chase and Lev
(2005).

Real-World Domains
We tested the performance of the schedulers described
above on three domains. First, a simplified robotic
kitchen-cleaning domain involving picking up
objects and putting them away (XPER). This domain
is based on the European Union-FP7 XPERIENCE
robotics project. Second, a logistics domain (LOGIS-
TICS), involving the transporting of packages between
cities using trucks and airplanes. This domain is based
on a domain in the First International Planning Com-
petition (Long and Fox 2003). Third and finally, a
cyber-security-based domain (CYBER) based on recog-
nizing the actions of hostile cyber attackers in a cloud-
based network computing environment.

For each domain a problem with a run time
between a second and a minute for the baseline algo-
rithm was generated by hand. This problem was then
presented to each of the algorithms running on a
multiprocessor machine using 1 to 12 cores. We will
present data on the speedup of each algorithm on
the problem, defined as the single threaded run time
divided by the run time with a larger number of
threads. Ideally we would like to achieve linear
speedup (speedup equal to the number of threads).

In the following graphs, we compute the speedup
against the baseline run time of the original algo-
rithm. This tells us how much faster we processed
the input compared to using a single-threaded
implementation. In later figures, where the baseline
implementation is not included, we instead compute
the speedup by comparing the run time for a single
thread and the run time for the current number of
threads.

Figures 4, 5, and 6 show the average speedup for
each scheduler while varying the number of threads.
Each data point was generated by averaging 20 runs.
Comparing the results for different schedulers on all
three problem domains, the work-stealing scheduler
is the clear winner; the next best scheduler varies
depending on the domains, but the work-stealing
scheduler dominates the others.

The work-stealing scheduler does this by ensuring
threads that are starved for work can rapidly find
more, and the lockless work-stealing deque imple-
mentation has very low overhead. Given this con-
vincing success, the remainder of our experiments
focused on the work-stealing scheduler.

Figure 7 compares the speedups achieved on all
three domains using the work-stealing scheduler.
The algorithm performs significantly worse on the
CYBER domain than the XPER and LOGISTICS

Articles

28 AI MAGAZINE

Articles

SUMMER 2015 29

domains. Looking at the respective run times pro-
vides us with a clue as to why. The CYBER domain
problem runs much faster than the others. For com-
parison, with a single thread the CYBER domain
problem runs in around 1 second, the LOGISTICS
domain problem in around 25 seconds, and the
XPER domain problem in around 60 seconds. This
suggests that the CYBER domain may simply have
less to work to parallelize. Geib (2009) cites the num-
ber of explanations to be computed as the chief
determiner of the run time for the single-threaded
case, and that the structure of the plans and choice of
anchors can significantly affect this. Therefore, we
decided to explore whether the structure of the plans

in the domain and the choice of anchors could affect
the speedup.

Synthetic Domains
To study how the structure of the plans within the
domains affects the amount of work to be done and
therefore the possible speedup, we created six syn-
thetic domains, systematically varying the plan
grammar, while maintaining the same input
sequence of observations. We explored two different
ways in which the plan grammer could be varied.
First by changing the causal ordering of the actions

Figure 4. Speedup for CYBER Domain
Versus Number of Threads.

Fi 4 SpS d p f CYBY ERE D i

1 2 3 4 5 6 7 8 9 10 11 12
#ofThreads

0

1

2

3

4

5

6

7

8
Sp

ee
d

up
baseline
naive
blocking
stealing
global

Figure 5. Speedup for XPER Domain Versus Number of Threads.Fi 5 SpS d p f XPX EP RE D i V N b f ThT d

#ofThreads

Sp
ee

d
up

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

baseline
naive
blocking
stealing
global

Figure 6. Speedup for LOGISTICS Domain
Versus Number of Threads.

Sp
ee

d
up

#ofThreads
1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

10

12

baseline
naive
blocking
stealing
global

Figure 7. Speedup of Work-Stealing Across All Domains.

#ofThreads

Sp
ee

d
up

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10
cyber
XPER
LOGISTICS

within the plans, second by varying the anchor
actions selected for the plans. We discuss each in
turn. Prior work (Geib and Goldman 2009) has
shown that partial orderness in the plan grammar
could result in large numbers of alternative explana-
tions when using gramatical methods for plan recog-
nition. We therefore explored two partially ordered
plan structures (see figure 8), which we will refer to as
order FIRST where there is a single first element of the
plan that all other actions must follow, and order
LAST where there is a single last element that all
actions must precede.

The effects of partial ordering can be influenced by
the choice of anchors in a lexicalized plan grammar
(Geib and Goldman 2009). Therefore, for our syn-
thetic domains, we assumed complete tree-structured
plans of depth two with a uniform branching factor
of three resulting in nine-step plans. We then num-
bered the actions of the plan from left to right and on
the basis of these indices systematically varied the
anchor of the plans from the far left to the far right.
Given the branching factor of three for each subplan,
this resulted in three possible values for the anchor,
which we will call anchor LEFT, anchor MID, and
anchor RIGHT, corresponding to the anchor being
assigned to the leftmost action in the subplan, the
rightmost action of the subplan, or the middle action
in the subplan. As an example of only a subpart of the
plan, figure 9 is a set of CCG grammars for a three-
step, order FIRST plan, like that shown in figure 8.

As in the grammars in figure 9, in the future, we
will denote each synthetic test domain grammar by
its ordering feature and its anchor feature.

To quantify how much work is done by the algo-
rithm for each grammar, during recognition we
recorded the number of explanations that were gen-
erated both during the intermediate stages of pro-
cessing as well as the final number of explanations
generated for all of the domains. The results are pre-
sented in table 1. They confirm that varying the
anchor feature can have a significant impact on the
number of explanations generated by the algorithm,
and thus the number of explanations can vary wide-
ly on the same domain with the same input if the
grammar is different.

To confirm our hypothesis that the number of
explanations generated is a reasonable metric of the
amount of time taken, figure 10 is a scatter plot that
shows the run time of the work-stealing algorithm in
seconds against the sum of the intermediate and final
number of explanations for all of the domains. Note
that FIRST-MID and LAST-RIGHT are basically on top
of one another down almost on the origin. From this,
we can see that the growth in run time is roughly
proportional to the total number of explanations
generated for each problem, giving us strong reason
to believe the total number of explanations is a rea-
sonable metric for the amount of work done.

Next, figure 11 plots the speedup for the work

Articles

30 AI MAGAZINE

CG

C1 C2 C3

First

CG

C1 C2 C3

Last

Figure 8. Causal Structures for Plans.

Figure 9. Set of CCG Grammars for a Three-Step, Order FIRST Plan.

Table 1. Explanations Generated by Each Domain.

Fi 9 S t f CCG G f ThT St O d FIF RI ST Pl

CCG: 5

act1 := GC/{C2, C3}.
act2 := C2.
act3 := C3.

act1 := C1.
act2 := (GC\{C1})\{C3}
 or (GC/{C3})\{C1}.
act3 := C3.

act1 := C1.
act2 := C2.
act3 := (GC\{C1})\{C2}
or (GC/{C2})\{C1}.

FIRST-LEFT:

FIRST-MID:

FIRST-RIGHT:

Domain Intermediate Final

FIRST-LEFT 1115231 330496

FIRST-MID 209 16

FIRST-RIGHT 5438 1296

LAST-LEFT 208326 48384

LAST-MID 1106489 416016

LAST-RIGHT 35 1

CYBER 74487 26632

XPER 710549 1149149

LOGISTICS 1628890 995520

Articles

SUMMER 2015 31

stealing algorithm on the same observation stream
for each of the synthetic domains. As expected it
shows a clear difference in speedup depending on the
structure of the plans and the grammar used to
describe it. Comparing figure 11 to table 1 also shows
a clear correlation. The LAST-RIGHT and FIRST-MID
domains, which generate only a handful of explana-
tions, have limited speedup, while the FIRST-LEFT
and LAST-MID, which generate tens of thousands of
explanations, exhibit close to linear speedup. This
gives us strong reason to believe that the differences
in the speedup are a result of the differences in the
number of generated explanations and therefore the
number of processors that can be kept busy.

Practical Implications
In the previous section, we have shown that the
number of intermediate and final explanations can
vary wildly depending on the structure of the
domain. We now examine properties of all the
domains examined so far, real and synthetic.

This indicates that when more explanations are
possible according to the grammar, more work is
required, therefore more threads can be kept busy,
and a greater speedup is achievable. However, the
converse is also true. Fewer explanations in a domain
means that less work needs to be done, and for small
enough problems there will be no significant gain in
the run time for a parallel implementation. There-
fore, to help in real-world deployment, we need to be
able to identify when a parallel implementation is
worth the cost.

To identify this, figure 12 is a second scatter plot
graphing speedup achieved with 12 threads against
the base run time with 1 thread for each of the prob-
lem domains. It shows that for runs that take longer
than around 5 seconds, we achieve 10-fold speedup,
very close to the ideal 12-fold speedup, making par-
allelism worthwhile. For shorter runs, there is much
less benefit to the multithreaded implementation.

Our analysis also suggests that for real-world
domains with plan grammars with predominately
LAST-RIGHT or FIRST-MID structure (where both the
causal structure of the plan and the CCG grammar’s
anchors act to reduce the number of explanations)
parallelism will be less helpful. The amount of work
required will already be reduced by the causal and gra-
matical constraints. Domains with grammars that do
not use these tools to constrain the number of expla-
nations will see significant benefits from parallelism.

Conclusion
This article has shown that parallelization using a
work-stealing scheduling regime can be usefully
applied to significantly speed up the processing of the
ELEXIR plan-recognition system. The multithreaded
implementation discussed in this article allows us to

Ru
n

ti
m

e

Explanations

0

1

2

3

4

5

6

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x 106

Figure 10. Run Time Versus Total Explanations for All Domains.

Sp
ee

d
up

#ofThreads
1 6 12

0

2

4

6

8

10 FIRST-LEFT
FIRST-MID
FIRST-RIGHT
LAST-LEFT
LAST-MID
LAST-RIGHT

Figure 11. Speedup of Synthetic Domain Problems
with Increasing Number of Threads.

The data points for the FIRST-LEFT and LAST-MID, as well as the FIRST-MID
and LAST-RIGHT series overlap extremely closely.

Sp
ee

d
up

0 5 10 15 20 25 30 35

Single-ThreadedRuntime

0

2

4

6

8

10

12

Figure 12. Speedup versus Run Time for All Domains.

use the ubiquitous modern multicore
machines to explore domains that
would previously have been computa-
tionally intractable. Further, it demon-
strates that using the causal structure
of the plan and correctly choosing the
anchors for a CCG representation of
plans can have a significant impact on
the effectiveness of parallelization by
preemptively taming the complexity
that results from partially ordered
plans. Finally, it has shown that while
parallelization is generally very helpful
it should not be universally applied.
For some domains and problems, the
costs of parallelization may equal the
gains, and it suggests some practical
rules of thumb for when this may hap-
pen when using ELEXIR.

In domains where there are a small
number of possible explanations rela-
tive to the number of processors, and
the length of the plans to be recog-
nized is short, the costs of paralleliza-
tion may very well outweigh the bene-
fits. However, in such domains the
single threaded implementation of
ELEXIR already has very fast runtimes.
Thus, the most encouraging result of
this work is that the parallelization of
the ELEXIR algorithm is most effective
(speedup is greatest and the marginal
costs of increasing parallelization low-
est) precisely when the need is greatest,
that is there are a large number of
lengthy possible explanations for the
observed actions.

The ELEXIR code base can be down-
loaded to enable others to experiment
with it.2

Acknowledgements
The work in this article was supported
by the EU Cognitive Systems project
Xperience (EC-FP7-270273) funded by
the European Commission.

Notes
1. See J. Evans (2006), A Scalable Concur-
rent Malloc(3) Implementation for Freebsd.
people.freebsd.org/~jasone/jemalloc/bsd-
can2006/jemalloc.pdf

2. www.planrec.org.

References
Blumofe, R. D., and Leiserson, C. E. 1999.
Scheduling Multithreaded Computations
by Work Stealing. Journal of the ACM 46(5):
720–748.

Bui, H. H.; Venkatesh, S.; and West, G.
2002. Policy Recognition in the Abstract
Hidden Markov Model. Journal of Artificial
Intelligence Research 17: 451–499.

Charniak, E., and Goldman, R. P. 1993. A
Bayesian Model of Plan Recognition. Artifi-
cial Intelligence 64(1): 53–79.

Chase, D., and Lev, Y. 2005. Dynamic Cir-
cular Work-stealing Deque. In Proceedings of
the Seventeenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures
(SPAA ’05), 21–28. New York: Association
for Computing Machinery.

Clark, S., and Curran, J. 2004. Parsing the
WSJ Using CCG and Log-linear Models. In
Proceedings of the 42th Annual Meeting of the
Association for Computational Linguistics,
104–111. Stroudsberg, PA: Association for
Computational Linguistics.

Curry, H. 1977. Foundations of Mathematical
Logic. New York: Dover Publications Inc.

Geib, C. 2009. Delaying Commitment in
Probabilistic Plan Recognition Using Com-
binatory Categorial Crammars. In Proceed-
ings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), 1702–1707.
Palo Alto, CA: AAAI Press.

Geib, C., and Goldman, R. 2011. Recogniz-
ing Plans with Loops Represented in a Lex-
icalized Grammar. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence
(AAAI-11), 958–963. Palo Alto, CA: AAAI
Press.

Geib, C. W., and Goldman, R. P. 2009. A
Probabilistic Plan Recognition Algorithm
Based on Plan Tree Grammars. Artificial
Intelligence 173(11): 1101–1132.

Herlihy, M., and Shavit, N. 2012. The Art of
Multiprocessor Programming, revised first edi-
tion. Amsterdam: Elsevier.

Hockenmaier, J. 2003. Data and Models for
Statistical Parsing with Combinatory
Catagorial Grammar. Ph.D. Dissertation,
School of Informatics, University of Edin-
burgh, Edinburgh, Scotland.

Hoogs, A., and Perera, A. A. 2008. Video
Activity Recognition in the Real World. In
Proceedings of the 23rd AAAI Conference on
Artificial Intelligence (AAAI-08) 1551–1554.
Palo Alto, CA: AAAI Press.

Kautz, H., and Allen, J. F. 1986. Generalized
Plan Recognition. In Proceedings of the Fifth
National Conference on Artificial Intelligence
(AAAI-86), 32–38. Palo Alto, CA: AAAI Press.

Liao, L.; Fox, D.; and Kautz, H. 2007.
Extracting Places and Activities from GPS
Traces Using Hierarchical Conditional Ran-
dom Fields. In International Journal of Robot-
ics Research 26(1): 119 – 134.

Long, D., and Fox, M. 2003. The 3rd Inter-
national Planning Competition: Results
and Analysis. Journal of Artificial Intelligence
Research 20: 1–59.

Articles

32 AI MAGAZINE

Modayil, J.; Bai, T.; and Kautz, H. A. 2008.
Improving the Recognition of Interleaved
Activities. Paper presented at the Tenth
International Conference on Ubiquitous
Computing, Seoul, South Korea, 21–24 Sep-
tember.

Schabes, Y. 1990. Mathematical and Com-
putational Aspects of Lexicalized Gram-
mars. Ph.D. Dissertation, Department of
Computer and Information Science, Uni-
versity of Pennsylvania, Philadelpha, PA.

Sidner, C. L. 1985. Plan Parsing for Intend-
ed Response Recognition in Discourse. Com-
putational Intelligence 1(1): 1–10.

Steedman, M. 2000. The Syntactic Process.
Cambridge, MA: The MIT Press.

Vail, D. L., and Veloso, M. M. 2008. Feature
Selection for Activity Recognition in Multi-
Robot Domains. In Proceedings of the 23rd
AAAI Conference on Artificial Intelligence
(AAAI-08) 1415–1420. Palo Alto, CA: AAAI
Press.

Vilain, M. 1991. Deduction as Parsing. In
Proceedings of the Seventh National Conference
on Artificial Intelligence, 464–470. Palo Alto,
CA: AAAI Press.

Vilain, M. B. 1990. Getting Serious About
Parsing Plans: A Grammatical Analysis of
Plan Recognition. In Proceedings of the Eighth
National Conference on Artificial Intelligence,
190–197. Palo Alto, CA: AAAI Press.

Christopher Geib is an associate professor
in the College of Computing and Informat-
ics at Drexel University. His principle
research interests are in artificial intelli-
gence(AI) methods for intent recognition
and planning more generally probabilistic
reasoning about actions using formal gram-
mars, and the interface between continuous
control systems and logic-based reasoning
systems. Geib’s work on intent recognition
has been applied in multiple application
areas including assistive care for the elderly,
human robot interaction, and computer
network security.

Christopher E. Swetenham is a research
associate on the University of Hong Kong’s
team in the DARPA Robotics Challenge.
After completeing his undergraduate degree
at the University of Cambridge, he spent six
years working in the games industry. He
then obtained a master’s degree from the
University of Edinburgh School of Infor-
matics before pursuing a career in robotics.

