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Physical-cyber-social systems (PCSS) (Sheth, Anan-
tharam, and Henson 2013) are a revolution in sensing,
computing, and communication that brings together a

variety of resources. The resources can range from networked
embedded computers and mobile devices to multimodal data
sources such as sensors and social media. The applications
can span multiple domains such as medical, geographical,
environmental, traffic, behavioral, disaster response, and sys-
tem health monitoring. The modeling and computing chal-
lenges arising in PCSS can be organized around the five v’s of
big data (volume, variety, velocity, veracity, and value),
which align well with our research efforts that exploit seman-
tics, network, and statistics-empowered web 3.0.

Semantics-Empowered 
Big Data Processing 
with Applications 

Krishnaprasad Thirunarayan, Amit Sheth

n We discuss the nature of big data
and address the role of semantics in
analyzing and processing big data that
arises in the context of physical-cyber-
social systems. To handle volume, we
advocate semantic perception that can
convert low-level observational data to
higher-level abstractions more suitable
for decision making. To handle variety,
we resort to semantic models and anno-
tations of data so that intelligent pro-
cessing can be done independent of het-
erogeneity of data formats and media.
To handle velocity, we seek to use con-
tinuous semantics capability to dynam-
ically create event- or situation-specific
models and recognize relevant new con-
cepts, entities and facts. To handle
veracity, we explore trust models and
approaches to glean trustworthiness.
These four of the five v’s of big data are
harnessed by the semantics-empowered
analytics to derive value to support
applications transcending the physical-
cyber-social continuum. 
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Characteristics of the 
Big Data Problem

We discuss the primary characteristics of the big data
problem as it pertains to the five v’s. (The first three
were originally introduced by Doug Laney of Gart-
ner.)

Volume
The sheer number of sensors and the amount of data
reported by sensors is enormous and growing rapid-
ly. For example, more than 2 billion sensors have
been deployed and about 250 terabytes of sensor data
are generated for a New York to Los Angeles flight on
a Boeing 737.1 The Parkinson’s disease data set2 that
tracked 16 people (9 patients + 7 controls) with
mobile phones containing 7 sensors over 8 weeks is
12 gigabytes in size. However, availability of fine-
grained raw data is not sufficient unless we can ana-
lyze, summarize, or abstract them in actionable ways.
For example, from a pilot’s perspective, the sensors’
data processing should yield insights about whether
the jet engine and the flight control surfaces are
behaving normally or whether there is cause for con-
cern. Similarly, we should be able to measure the
symptoms of Parkinson’s disease using sensors on a
smartphone, monitor the disease’s progression, and
synthesize actionable suggestions to improve the
quality of life of the patient. Cloud computing infra-
structure can be deployed for raw processing of mas-
sive social and sensor data. However, we still need to
investigate how to effectively translate large amounts
of machine-sensed data into a few human-compre-
hensible nuggets of information necessary for deci-
sion making. Furthermore, privacy and locality con-
siderations require moving computations closer to
the data source, leading to powerful applications on
resource-constrained devices. In the latter situation,
even though the amount of data is not large by nor-
mal standards, the resource constraints negate the
use of conventional data formats and algorithms,
and instead necessitate the development of novel
encoding, indexing, and reasoning techniques (Hen-
son, Thirunarayan, and Sheth 2012). 

The volume of data challenges our ability to
process them. First, it is difficult to abstract fine-
grained machine-accessible data into a coarse-
grained human-comprehensible form that summa-
rizes the situation and is actionable. Second, it is
difficult to scale computations to take advantage of
distributed processing infrastructure and, where
appropriate, exploit reasoning on mobile devices.

Variety
PCSS generate and process a variety of multimodal
data using heterogeneous background knowledge to
interpret the data. For example, traffic data (such as
from 511.org) contains numeric information about
vehicular traffic on roads (for example, speed, vol-

ume, and travel times), as well as textual information
about active events (for example, accidents, vehicle
breakdowns) and scheduled events (for example,
sporting events, music events) (Anantharam,
Thirunarayan, and Sheth 2013). Weather data sets
(such as from Mesowest) provide numeric informa-
tion about primitive phenomena (for example, tem-
perature, precipitation, wind speed) that are required
to be combined and abstracted into human-compre-
hensible weather features in textual form. In medical
domains (for example, cardiology, asthma, and
Parkinson’s disease), various physiological, physical,
and chemical measurements (obtained through on-
body sensors, blood tests, and environmental sen-
sors) and patients’ feedback and self-appraisals
(obtained by interviewing them) can be combined
and abstracted to determine their health and well-
being. The available knowledge captures both quali-
tative and quantitative aspects. Such diverse knowl-
edge when integrated can provide complementary
and corroborative information (Sheth and Thir -
unarayan 2012). Geoscience data sets, and materials
and process specifications used for realizing integrat-
ed computational materials engineering3 (ICME) and
materials genome initiative4 (MGI), exhibit a lot of
syntactic and semantic variety5 (Thirunarayan,
Berkovich, and Sokol 2005).

The variety in data formats and the nature of avail-
able knowledge challenges our ability to integrate
and interoperate with heterogeneous data. 

Velocity
Handling of sensor and social data streams in PCSS
requires online (as opposed to offline) algorithms to
(1) efficiently crawl and filter relevant data sources,
(2) detect and track events and anomalies, and (3)
collect and update relevant background knowledge.
For instance, Wikipedia event pages can be harnessed
for relevance ranking of Twitter hashtags. The seman-
tic similarity of a hashtag to an event can be deter-
mined by leveraging the background knowledge in
the corresponding event page on Wikipedia. Specifi-
cally, we have used the entities that co-occur with the
tweets containing the hashtag and the entities pres-
ent in the Wikipedia event page to determine the rel-
evance ranking (Kapanipathi et al. 2013).  Similarly,
entities can be tracked in the context of a natural dis-
aster or a terror attack. For example, during Hurri-
cane Sandy, tweets indicated possible flooding of a
subway station, whose location obtained using open
data6 helped identify sensors for real-time updates.
On the other hand, raw speed of interaction is criti-
cal for financial market transactions.

The rapid change in data and trends challenges our
ability to process them. First, it is difficult to filter and
rank the relevant data incrementally and in real time.
Second, it is difficult to cull and evolve the relevant
background knowledge.



Articles

SPRING 2015   41

Veracity
PCSS receive data from sensors subject to the
vagaries of nature (some sensors may even be com-
promised), or from crowds with incomplete infor-
mation (some sources may even be deceitful). Statis-
tical methods can be brought to bear to improve
trustworthiness of data in the context of homoge-
neous sensor networks, while semantic models can
be used for heterogeneous sensor networks
(Thirunarayan et al. 2013). For instance, for applica-
tions that involve both humans and sensors systems,
it is crucial to have trustworthy aggregation of all
data and control actions. The 2002 Überlingen
midair collision7 occurred because the pilot of one
of the planes trusted the human air traffic controller
(who was ill informed about the unfolding situation)
instead of the electronic traffic collision avoidance
system (TCAS) (which was providing a conflicting
but correct course of action to avoid collision). Sim-
ilarly, we were unable to identify and resolve incon-
sistencies, disagreements, and changes in assertions
in the aftermath of the rumor about Sunil Tripathi
being a potential match for the grainy surveillance
photographs of the Boston Marathon bomber.8

These examples illustrate the difficulties we face
while making decisions based on conflicting data
from different sources.

The determination of veracity of data challenges
our ability to detect anomalies and inconsistencies
in social and sensor data. Reasoning about trustwor-
thiness of data is also difficult. Fortunately, the lat-
ter can exploit temporal history, collective evidence,
and context for conflict resolution.

Value
Semantics-empowered analytics of big data can be
harnessed to deal with the challenges posed by vol-
ume, velocity, variety, and veracity to derive value. A
key aspect in transforming PCSS to provide action-
able information is the construction and application
of relevant background knowledge needed for data
analytics and prediction. For example, a hybrid of
statistical techniques and declarative knowledge can
benefit leveraging sensor data streams in a variety of
applications ranging from personalized health care,
to reducing readmission rates among cardiac
patients, to improving quality of life among asth-
matic patients. Ultimately, the analysis of environ-
mental, medical, system health, and social data
enables situational awareness and derivation of
nuggets of wisdom for action. 

Extracting value using data analytics on sensor
and social data streams challenges our ability to
acquire and apply knowledge from data and inte-
grate it with declarative domain knowledge for clas-
sification, prediction, decision making, and person-
alization.

Role of Semantics in 
Big Data Processing

We discuss examples of our early research in devel-
oping semantics-empowered techniques to address
the big data problem organized around the five v’s
from Kno.e.sis’s active multidisciplinary projects9

(Thirunarayan and Sheth 2013), while realizing that
it will require a longer survey paper to review research
being pursued by our community at large. 

Addressing Volume: Semantic Scalability
Semantics-based models address the volume chal-
lenge by relating how high-level human-sensible
abstractions can manifest in terms of low-level sensor
observations. This enables filtering of data by deter-
mining what to focus on and what to ignore, pro-
moting scalability. Thus, the key to handling volume
is to change the level of abstraction for data process-
ing to information that is meaningful to human
activity, actions, and decision making. We have
called this semantic perception (Henson 2013, Sheth
2011a), which involves semantic integration of large
amounts of heterogeneous data and application of
perceptual inference using background knowledge to
abstract data and derive actionable information. Our
work involving the semantic sensor web (SSW) and
IntellegO (Henson, Sheth, and Thirunarayan 2012),
which is a model of machine perception, integrates
both deductive and abductive reasoning into a uni-
fied semantic framework. This approach not only
combines and abstracts multimodal data but also
seeks relevant information that can reduce ambigui-
ty and minimize incompleteness, a necessary precur-
sor to decision and action. Specifically, our approach
uses background knowledge, expressed through
cause-effect relationships, to convert low-level data
into high-level actionable abstractions, using cyclical
perceptual reasoning involving predictions, discrim-
ination, and explanation. For instance, in the med-
ical context, symptoms can be monitored using sen-
sors, and plausible disorders that can account for
them can be abduced. However, what heart failure
patients will benefit from are suggestions such as
whether the condition is as normally expected, or
requires a call or visit to a nurse or doctor, or hospi-
talization. The first example, which follows, can be
formalized using our approach with demonstrable
benefits, while the subsequent examples require
research into high-fidelity models and human medi-
ation for fruition.

Example One: Weather Use Case
This application involves determining and tracking
weather features from weather phenomena, with the
potential for tasking sensors if additional informa-
tion is necessary. We have developed the semantical-
ly enabled sensor observation service (SemSOS),
which leverages semantic technologies to model the
domain of sensors and sensor observations in a suite



of ontologies, adding semantic annotations to the
sensor data, and reasoning over them (Henson et al.
2009). Specifically, we have extended an open source
SOS implementation, 52North, with our semantic
knowledge base. For the weather use case, we have
used rules provided by NOAA to map primitive
machine-sensed weather data (for example, wind
speed, temperature, precipitation) to human-com-
prehensible weather features (for example, blizzard,
flurry). SemSOS provides the ability to query high-
level knowledge of the environment as well as low-
level raw sensor data using SPARQL. The task of
abstracting low-level sensor data to high-level fea-
tures as explanation is abductive in nature, while dis-
ambiguation among multiple explanations requires
deduction and selectively seeking additional data.

Example Two: Health Care Use Case 
(Diagnosis, Prevention, and Cure)
These applications involve determining disorders
afflicting a patient — their degree of severity and pro-
gression — by monitoring symptoms through sen-
sors and mobile devices. They can also be augment-
ed with patient-reported observations (for example,
about feeling giddy or tired or depressed that cannot
always be ascertained through physical/chemical
means), and/or laboratory test results. 

Semantic perception involves abstracting ma -
chine-sensed data into coarse-grained form (for
example, using average, peak, rate of change, dura-
tion), and extracting human-comprehensible fea-
tures by integrating them. This approach requires
construction of suitable domain models and a hybrid
abductive/deductive reasoning framework, which is
our current research focus. Abduction generates
abstractions of sensor data as explanations. Deduc-
tion can be used to discriminate among multiple
explanations by predicting and seeking confirmation
by tasking appropriate sensors. In general, this itera-
tive and interleaved use of abduction and deduction
can eventually generate the minimum explanation
that can be used to determine action. For example,
abduction can be applied to weather phenomena
data (for example, precipitation and temperature) to
determine weather features (for example, flurry and
blizzard) that can be further disambiguated by mak-
ing additional observations (for example, wind
speed), before taking action. Similarly, abduction can
be applied to observed symptoms to determine can-
didate diseases that can then be disambiguated using
the results of additional tests, before one can deter-
mine medications and regimen. For Parkinson’s dis-
ease, data from accelerometer, GPS, compass, micro-
phone, and others are converted into
human-perceived features such as tremors, walking
style, balance, and slurred speech to diagnose and
monitor disease progression and to recommend con-
trol options. For heart failure patients, weight
change, heart rate, blood pressure, oxygen level, and
others are combined and translated into risk level for

hospital readmission (to minimize preventable read-
missions). For asthma patients, data from environ-
mental and physiological sensors and personal feed-
back about wheezing, coughing, sleeplessness, and
others can be used to recommend prevention strate-
gies, treatment levels, and control options. The con-
tinuous monitoring of a patient, his or her sur-
roundings, and the associated domain models can be
used to determine actionable causes for the symp-
toms rather than just educated guesses. In general,
patients suffering from chronic diseases can benefit
from suggestions for avoiding aggravating factors to
improve the quality of life and for enhancing adher-
ence/compliance to prescribed treatment or control
options.

Some specific research goals to be pursued to real-
ize semantics-based analytics (that also overlap with
approaches to meet the variety challenge) include:
(1) Development and codification of high-fidelity
background knowledge for processing sensor data
streams using expressive semantic representations.
For example, in the realm of health care, symptoms
and disorders are complex entities with complicated
interactions. The acceptable and desirable thresholds
for various monitored parameters depend on comor-
bidity, especially due to chronic conditions. Any rep-
resentation must provide the necessary expressivity
to accurately formalize the reality of the situation.
(2) Using contextual information and personaliza-
tion. An accurate interpretation of data is based on
spatiotemporal-thematic contextual knowledge. In
medical scenarios, effective treatment also requires
personalization on the patient’s historical data and
the clinician-prescribed current protocol (for exam-
ple, maintain BP at higher than what is normal for
NIH-specific guidelines) such as what is in electron-
ic medical records (EMR). (3) Effective summariza-
tion and justification of recommended action. One
of the problems resulting from indiscriminate sens-
ing and logging of observed data due to ubiquity of
mobile computing, wireless networking, and com-
munication technologies is that we are drowned in
the noise.10 The ability to determine the nature and
severity of a situation from a glut of data and to issue
an informative alert or summary that is accessible to
and actionable by the end users is a critical challenge
we are addressing in the kHealth project. (4) Efficient
perceptual reasoning on resource-constrained
devices. In order to provide intelligent computing at
the edge, we need techniques to collect the data at
the edge, intelligently reason with the data using
background knowledge, and return the essence. For
example, this is required to address privacy concerns
and the need for timely and ubiquitous access to
data using wireless mobile devices. Its realization will
also spur use of innovative and specialized inference
techniques on resource-constrained devices as
described in the next section (Henson,
Thirunarayan, and Sheth 2012). 
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An Efficient Approach to Semantics-
Based Machine Perception in 
Resource-Constrained Devices
We employed OWL to formally define the two infer-
ence tasks needed for machine perception — expla-
nation and discrimination (Henson, Thirunarayan,
and Sheth 2011). Unfortunately, this declarative
specification does not run as is on extant mobile
devices using a standard reasoner, as its memory and
time requirements far exceed the capacity provided
by the popular configurations of the mobile devices.
This hurdle has been overcome using bit-vector-
encoding-based algorithms for explanation and dis-
crimination tasks as summarized later (Henson,
Thirunarayan, and Sheth 2012).

Semantic Sensor Ontology
The SSN ontology serves as a foundation to formalize
the semantics of perception. An observation
(ssn:Observation) is defined as a situation that
describes an observed feature, an observed property,
the sensor used, and a value resulting from the obser-
vation. (Note: The prefix ssn is used to denote con-
cepts from the SSN ontology.) A feature (ssn:Feature)
is an object or event in an environment, and a prop-
erty (ssn:Property) is an observable attribute of a fea-
ture. For example, in cardiology, elevated blood pres-

sure is a property of the feature Hyperthyroidism. In
SSN, knowledge of the environment is represented as
a relation (ssn:isPropertyOf) between a property and
a feature. To enable integration with other ontologi-
cal knowledge on the web, this knowledge is aligned
with concepts in the DOLCE Ultra Lite ontology.11

Figure 1 provides a simple example from the cardiol-
ogy domain. 

Semantics of Machine Perception
A feature is said to explain an observed property if
the property is related to the feature through an
ssn:isPropertyOf relation. In figure 1, Hyperthy-
roidism explains the observed properties elevated
blood pressure, clammy skin, and palpitations. Since
several features may be capable of explaining a giv-
en set of observed properties, explanation is most
accurately defined as an abductive process. For exam-
ple, the observed properties, elevated blood pressure
and palpitations, are explained by the features
Hypertension and Hyperthyroidism. A property is
said to discriminate between a set of features if its
presence can reduce the set of explanatory features.
In figure 1, the property clammy skin discriminates
between the features, Hypertension and Hyperthy-
roidism. For a detailed formal description of expla-
nation and discrimination tasks in OWL, see Hen-
son, Thirunarayan, and Sheth (2012).
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Figure 1. Bipartite Graph Representation of a Simple Cardiology Knowledge Base.

elevated blood
pressure

clammy skin

palpitations

Hypertension 

Hyperthyroidism 

Pulmonary
Edema 

ssn:Property  ssn:Feature
ssn:isPropertyOf



Efficient Algorithms for Machine Perception
To implement machine perception on resource-con-
strained devices, we developed bit-vector based algo-
rithms for explanation and discrimination, satisfying
a single-feature assumption (that is, one feature is
sufficient to account for all the observed properties). 

To preserve the ability to share and integrate with
knowledge on the web, lifting and lowering map-
pings between the semantic representations (in RDF)
and bit-vector representations were developed. An
environmental knowledge base is represented as a bit
matrix KBBM, with rows representing properties and
columns representing features. KBBM[i][j] is set to 1
(true) iff the property pi is a property of feature fj (that

is, there exists an ssn:isPropertyOf(pi,fj) relation).
Observed properties are represented as a bit vector
OBSVBV, where OBSVBV[i] is set to 1 iff ObservedProp-
erty(pi) holds (that is, property pi has been observed).
Explanatory features are represented as a bit vector
EXPLBV. EXPLBV[j] is set to 1 iff ExplanatoryFeature(fj)
holds (that is, the feature fj explains the set of
observed properties represented in OBSVBV). Discrim-
inating properties are represented as a bit vector DIS-
CBV where DISCBV[i] is set to 1 iff Discriminating-
Property(pi) (that is, the property pi discriminates
between the set of explanatory features represented
in EXPLBV). 

Algorithm for Explanation
The strategy employed for efficient implementation
of the explanation task relies on the use of the bit
vector AND operation to discover and dismiss those
features that cannot explain the set of observed prop-
erties. It begins with all the features as potentially
explanatory, and iteratively dismisses those features
that cannot explain an observed property. Eventual-
ly, for each index position in EXPLBV that is set to 1,
the corresponding feature explains all the observed
properties. See algorithm 1.

Algorithm for Discrimination
The strategy employed for efficient implementation
of the discrimination task relies on the use of the bit
vector AND operation to discover and indirectly
assemble those properties that discriminate between a
set of explanatory features. The discriminating prop-
erties are those that are determined to be neither
expected for all features nor not applicable for any
feature. Note that for a not-yet-observed property at
index i, and the bit vector PEXPLBV: (1) PEXPLBV =
EXPLBV holds and the ith property is expected; (2)
PEXPLBV = ZEROBV holds and the ith property is not
applicable; or (3) the ith property discriminates
between the explanatory features. Eventually, proper-
ties in DISCBV are each capable of partitioning the set
of explanatory features in EXPLBV. See algorithm 2.

Illustrative Example
Figure 1 captures the knowledge base (causal rela-
tionship) associating observed properties (symptoms)
and explanatory features (disorders). For example,
the observation palpitations is explained by both
Hypertension and Hyperthyroidism. Similarly, the
observations elevated blood pressure, and palpita-
tions can be explained by the three disorders hyper-
tension, hyperthyroidism, and pulmonary edema.
Viewing it another way, the observed properties ele-
vated blood pressure and palpitations are both
expected properties of the features Hypertension and
Hyperthyroidism, and hence the former properties
cannot be used to discriminate the latter features.
The observed property clammy skin is not applicable
to the features Hypertension and Hyperthyroidism
because the latter does not cause the former. Hence
the former property cannot be used to discriminate
the latter features. Discriminating properties are
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Algorithm 1. Explanation.

Algorithm 2. Discrimination.

Algorithm 1: Explanation 

[1] input OBSVBV
[2] define BitVector EXPLBV
[3] for each j = 0 … |sso:Feature|-1
[4]    EXPLBV[j] = 1
[5] for each i = 0 … |sso:Property|-1
[6]    if OBSVBV[i] == 1 then
[7]       EXPLBV = EXPLBV AND (row i in KBBM)
[8] output EXPLBV

Algorithm 2: Discrimination 

[1]  input EXPLBV, OBSVBV
[2]  define BitVector DISCBV
[3]  for each i = 0 … |sso:Property|-1
[4]     DISCBV[i] = 0
[5]  define BitVector ZEROBV 
[6]  for each j = 0 … |sso:Feature|-1
[7]     ZEROBV[j] = 0 
[8]  for each i = 0 … |OBSVBV|-1
[9]     if OBSVBV[i] == 0 then
[10]       BitVector PEXPLBV = 
[11]          EXPLBV AND (row i in KBBM)
[12]       if PEXPLBV != ZEROBV and
[13]          PEXPLBV != EXPLBV then
[14]          DISCBV[i] = 1
[15] output DISCBV



those that are neither expected nor not applicable.
Thus, the observation clammy skin can be used to
discriminate between hypertension and hyperthy-
roidism because clammy skin is caused by hyperthy-
roidism but not by hypertension.

Evaluation
We compared the use of OWL reasoner for running
our OWL specifications with the bit-vector-based
algorithms. (Recall that these algorithms have been
shown to be formally correct with respect to the
declarative specification in OWL [Henson, Sheth,
and Thirunarayan 2012].) Both implementations are
coded in Java, compiled and run on a Dalvik VM for
Android phone. The OWL implementation uses
Androjena,12 a port of the Jena Semantic Web Frame-
work for Android OS. The Samsung Infuse13 phone
had a 1.2 GHz processor, 16 gigabyte storage capaci-
ty, and 512 megabytes of internal memory. 

To test the efficiency of the two approaches, we
timed and averaged 10 executions of each inference
task. To test the scalability and evaluate worst-case
complexity, the set of relations between properties
and features in the knowledge base form a complete
bipartite graph. In addition, for the explanation eval-
uations, every property is initialized as an observed

property; for the discrimination evaluations, every
feature is initialized as an explanatory feature. We
varied the size of the knowledge base along two
dimensions — properties and features. In the OWL
approach, as the number of observed properties
increase, the ExplanatoryFeature class grows more
complex (with more conjoined clauses in the com-
plex class definition). As the number of features
increase, the ExpectedProperty class and NotApplic-
ableProperty class grow more complex. In the bit-
vector approach, as the number of properties
increase, the number of rows in KBBM grows. As the
number of features increase, the number of columns
grows.

Result of OWL Evaluations
The results from the OWL implementations of expla-
nation and discrimination are shown in figures 2 and
3, respectively. With a knowledge base of 14 proper-
ties and 5 features, and 14 observed properties to be
explained, explanation took 688.58 seconds to com-
plete (11.48 minutes); discrimination took 2758.07
seconds (45.97 minutes). With 5 properties and 14
features, and 5 observed properties, explanation took
1036.23 seconds to complete (17.27 minutes); dis-
crimination took 2643.53 seconds (44.06 minutes).
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Figure 2. Evaluation.
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In each of these experiments, the mobile device runs
out of memory if the number of properties or features
exceeds 14. The results of varying both properties
and features show greater than cubic growth rate
(O(n3) or worse). For explanation, the effect of fea-
tures dominates; for discrimination, we are unable to
discern any significant difference in computation
time between an increase in the number of properties
versus features.

Result of Bit-Vector Evaluations
The results from the bit-vector implementations of
explanation and discrimination are shown in figures
4 and 5, respectively. With a knowledge base of
10,000 properties and 1,000 features, and 10,000
observed properties to be explained, explanation
took 0.0125 seconds to complete; discrimination
took 0.1796 seconds. With 1,000 properties and
10,000 features, and 1,000 observed properties,
explanation took 0.002 seconds to complete; dis-
crimination took 0.0898 seconds. The results of vary-
ing both properties and features show linear growth-
rate (O(n)); and the effect of properties dominates. 

Discussion of Results
The evaluation demonstrates orders of magnitude
improvement in both efficiency and scalability. The

inference tasks implemented using an OWL reasoner
both show greater than cubic growth-rate (O(n3) or
worse), and take many minutes to complete with a
small number of observed properties (up to 14) and
small knowledge base (up to 19 concepts; #properties
+ #features). On the other hand, the bit-vector imple-
mentations show linear growth rate (O(n)), and take
milliseconds to complete with a large number of
observed properties (up to 10,000) and large knowl-
edge base (up to 11,000 concepts).

Overall Summary
We first developed a declarative specification of the
explanation and discrimination steps in first-order
logic (Henson, Thirunarayan, and Sheth 2011) and in
OWL (Henson, Sheth, and Thirunarayan 2012). We
demonstrated that, under single-feature (single-dis-
order) assumption, the explanation generation (an
abductive task) can be carried out by a (deductive)
OWL reasoner. We then developed bit-vector encod-
ing as (significantly more) efficient approach to com-
puting the explanation. Specifically, the OWL lan-
guage and reasoner is more expressive than our
limited framework as far as deductive inferences are
concerned. However, this reasoner is inadequate for
efficiently carrying out the explanation and discrim-
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Figure 3. Evaluation.
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ination steps we need for our use cases on resource-
constrained devices as discussed. In fact, the (percep-
tion cycle) computation that yields minimum expla-
nation (consisting of single entity/feature) is iterative
and requires interleaved use of explanation (abduc-
tion) and discrimination (deduction) steps. 

For the explanation and discrimination inference
tasks executed on a resource-constrained mobile
device, the evaluation highlights both the limitations
of OWL reasoning and the efficacy of specialized
algorithms utilizing bit-vector operations. The bit-
vector encodings and algorithms yield significant
and necessary computational enhancements —
including asymptotic order of magnitude improve-
ment, with running times reduced from minutes to
milliseconds, and problem size increased from 10s to
1000s. See figures 2, 3, 4, and 5 for details. The pro-
totyped approach holds promise for applications of
contemporary relevance (for example, health
care/cardiology).

Addressing Velocity: Continuous Semantics 
Velocity can be perceived as either (1) handling large
amount of streaming information for real-time
analysis (for example, Super Bowl generated 17,000

tweets/second) or (2) analyzing and delivering time-
ly information (for example, detect people in trouble
and respond through social media to help them out
during disasters). In our work, we have focused more
on dealing with the latter challenge. For real-time
analysis of social data (Twitter) during events, it is
necessary to keep the data filter (crawler) abreast of
the happenings of the event. For example, during
Hurricane Sandy, the focus on changing locations
(path of the hurricane) and happenings (power cut,
flooding, fire) has to be adapted to keep the analysis
up to date with the event. 

As part of our continuous semantics agenda
(Sheth, Thomas, and Mehra 2010; Sheth 2011b), we
support dynamic creation and updating of semantic
models from social-knowledge sources such as
Wikipedia and LOD. These offer exciting new capa-
bilities in making real-time social and sensor data
more meaningful and useful for advanced situation-
al awareness, analysis, and decision making. Exam-
ple applications can be as diverse as following elec-
tion cycles to forecasting, tracking, and monitoring
the aftermath of disasters. In figure 6, Twarql
(Mendes et al. 2010) is a social data stream filtering
application that utilizes domain models to deter-
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Figure 4. Evaluation.
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mine the appropriate key terms to filtering topically
relevant tweets. However, given that many events
(for example, disasters, unrests, and social move-
ments) change in unanticipated ways, having a stat-
ic predefined model would reduce the recall and con-
sequently miss temporally relevant information
(tweets) of the event. In continuous semantics, the
tweets themselves are used in conjunction with
Wikipedia for dynamic model creation by Doozer
(Sheth, Thomas, and Mehra 2010). Such a dynamic
domain model is then leveraged for crawling tempo-
rally relevant tweets by Twarql. For example, during
the Egypt revolt, when the term million man march
appeared on January 29, 2011, the day before this
suddenly planned event, we used the tweets to find
frequently occurring terms to generate a temporally
relevant domain model. The domain model consist-
ed of Heliopolis as a concept relevant to the Egypt
revolt. Heliopolis is a suburb in Egypt and was the
destination of million man march. This helped to
crawl more tweets that mentioned the term relevant
to the event. A preliminary study of determining
evolving key terms (hashtags) for events was done on
U.S. presidential elections and Hurricane Sandy. Our
approach is able to improve recall and crawl for (on

an average) 90 percent precise tweets using the top
five relevant hashtags.14

Addressing Variety: 
Hybrid Representation and Reasoning
Use of semantic metadata to describe, integrate, and
interoperate between heterogeneous data and servic-
es can be very powerful in the big data context, espe-
cially if annotations can be generated automatically
or with some manual guidance and disambiguation
(Sheth and Thirunarayan 2012). Continuous moni-
toring of PCSS is producing fine-grained sensor data
streams, which is unprecedented. Hence, domain
models capturing cause-effect relationships and asso-
ciations between features and data patterns gleaned
from the recently available sensors and sensor modal-
ities have not been uncovered and formalized hith-
erto. Such properly vetted domain models are, how-
ever, critical for prediction, explanation, and
ultimately, decision making in real time from the
sensed data. Further, objective physical sensors (for
example, weather sensors, structural integrity sen-
sors) provide quantitative observations. In contrast,
subjective citizen sensors (for example, tweets) pro-
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Figure 5. Evaluation.
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vide qualitative high-level interpretation of a situa-
tion. For example, a sensed slow-moving traffic can
result from rush hour, fallen trees, or icy conditions
that can be determined from postings on social
media. Thus physical and citizen sensors can provide
complementary and corroborative information
enabling disambiguation. Specifically, we have
sought semantic integration of sensor and social
data, using multiple domain ontologies and our
IntellegO perceptual reasoning infrastructure, to
improve situational awareness.

Learning domain models from data as well as spec-
ifying them declaratively has been widely studied
(Domingo and Kersting 2013). The former approach
is bottom up, machine driven, correlation based, and
statistical in nature, while the latter approach is top
down, manual, causal, and logical in nature. Signifi-
cant benefit of using domain-specific knowledge in
addition to machine-learning techniques is now well

appreciated (for example, Hammond, Sheth, and
Kochut [2002]). The data-driven approach (for exam-
ple, exemplified by probabilistic graphical models
[Koller and Friedman 2009]) can be further divided
into two levels: (1) structure learning that derives
qualitative dependencies and (2) parameter learning
that quantifies dependencies. We have investigated
how to combine these approaches to obtain more
complete and reliable situational awareness exploit-
ing mutually corroborative as well as disambiguation
information. Specifically, correlational structure
gleaned from data provides the right level of abstrac-
tion for refinement and enhancement using declara-
tive knowledge, prior to parameter estimation in
order to learn reliable probabilistic graphical models
(Anantharam, Thirunarayan, and Sheth 2013). 

Statistical and machine-learning techniques can
be brought to bear to discover correlations among
various sensor modalities. Use of data to validate
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Figure 6. Pipeline for Event Descriptions Using Continuous Semantics.
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domain models has been the hallmark of modern
physics and it is imperative for data science as well
(Brooks 2013a): data can help compensate for our
overconfidence in our own intuitions and can help
reduce the extent to which our desires distort our
perceptions. However, big data can be noisy, skewed,
inaccurate, and incomplete. Technically speaking,
this can confound probability estimates by implicit-
ly conditioning it. 

Correlations between two concepts can arise for
different reasons. First, correlations may be causal in
nature that is consistent with cause-effect declarative
knowledge. For example, anomalous motion of solar
system planets with regard to Earth can be satisfac-
torily explained by heliocentrism and theory of grav-
itation, and the anomalous precision of Mercury’s
orbit can be clarified by the general theory of relativ-
ity. C-peptide protein can be used to estimate insulin
produced by a patient’s pancreas. Second, correla-
tions may be coincidental due to data skew or mis-
representation. For example, data-empowered con-
flicting claims have been made with improper use of
historical precedents (Cayo 2013, Stauffer 2002,
Christensen 1997).15 Third, correlations may be coin-
cidental new discoveries. For example, Wal-Mart
executives associated approaching hurricanes with
people buying large quantities of strawberry Pop-
Tarts (Brooks 2013b). Fourth, correlations may be
anomalous and accidental. For example, since the
1950s, both the atmospheric carbon dioxide level
and obesity levels have increased sharply. Finally,
Pavlovian learning induced conditional reflex, and
some of the financial market moves, are classic cases
of correlation turning into causation! 

Even though correlations can provide valuable
insights, they can at best serve as a valuable hypoth-
esis or deserve explaining from a background seman-
tic theory before we can have full faith in them. For
example, consider controversies surrounding asser-
tions such as high debt causes low growth, and low
growth causes high debt. On the other hand,
stress/spicy foods are correlated with peptic ulcers,
but the latter are caused by Helicobacter pyroli.16

In essence, all these anecdotal examples show pos-
sible pitfalls that can also befall big data analytics and
predictions, and potential benefits that can accrue. 

Combining a statistical approach with declarative
logical approach has been a holy grail of knowledge
representation and reasoning (Domingo and Lowd
2009). Some specific research goals to be pursued
here to improve the quality, generality, and depend-
ability of background knowledge can include: (1)
Gleaning of data-driven qualitative dependencies,
and integration with qualitative declarative knowl-
edge, that are at the same level of granularity and
abstraction. (2) Use of these seed models to learn
parameters for reliable fit with the data. For instance,
511.org data (for Bay Area road traffic network) can
be analyzed to obtain progressively expressive mod-

els starting from gleaning undirected correlations
among concepts, to updating (enhancing and cor-
recting) it further using declarative knowledge from
ConceptNet17 to orient the dependencies among
concepts, to quantifying dependencies (Anantharam,
Thirunarayan, and Sheth 2013). Specifically, 511.org
data can enable us to determine correlation between
a number of random variables such as Travel Time,
Volume, Speed, Delay, Active Event, Scheduled
Event, Day of the Week, and Time of Day, associated
with every road link. A Bayesian network can be
gleaned from 511.org data and enhanced with explic-
itly provided declarative knowledge by humans or
available in ConceptNet (Liu and Singh 2004). These
enhancements can be in the form of correcting edges,
orienting undirected edges, and adding new edges.
For instance, the enhanced Bayesian network
includes edges such as baseball-game → traffic jam,
traffic jam → slow traffic, and bad weather → slow
traffic (from ConceptNet), and Time of Event →
Active Event, Volume → Speed, and Speed → Travel
Time, and Scheduled Event → Event (from 511.org).

We encourage four principled ways to integrate the
declarative approach with progressively expressive
probabilistic models for analyzing heterogeneous
data (Domingo and Lowd 2009): (1) naive Bayes that
treats all the features as independent; (2) conditional
linear Gaussian that accommodates Boolean random
variables; (3) linear Gaussian that learns both struc-
ture and parameters; and (4) temporal enrichments
to these models that can account for the evolution in
PCSS. We have applied this approach to fine-grained
analysis of Kinect data streams by building models to
predict whether a pose belongs to a human or an
alien.18 Such techniques can also be applied for activ-
ity recognition — ranging from monitoring Parkin-
son’s or Alzheimer’s patients to monitoring traffic
and system health. 

Orthogonal to these efforts are our research initia-
tives to deal with the variety of issues cropping up in
formalizing materials and process specifications
(specs). This can arise in the context of integrated
computational materials engineering (ICME) and
materials genome initiative (MGI). We are develop-
ing a continuum of lightweight ontologies to anno-
tate documents and embed data semantics to deal
with heterogeneity. For example, a spec can be anno-
tated to different levels of detail. The simplest
approach is to make explicit the source and nature of
a spec (for example, AMS 4967 Ti Alloy in the form of
bar, wire, and others). The next refinement can deter-
mine the names of the processing steps the spec
describes (for example, composition, heat treatment).
A really detailed approach can aggregate all the
required parameters for carrying out a process/test
(for example, annealing, tensile test). Our approach-
es present cost-benefit trade-offs accommodating var-
ious application scenarios from indexing and seman-
tic search, to content extraction, to data integration
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(Thirunarayan, Berkovich, and Sokol 2005). Further,
tabular data are compact and highly irregular
(Thirunarayan 2005) because they are meant for
human consumption. Developing regular data struc-
tures with well-defined semantics as targets for table
translation is an active area of research (Thiru n-
arayan and Sheth 2013).

Addressing Veracity: 
Gleaning Trustworthiness
A semantics-empowered integration of physical and
citizen sensor data can improve assessing data trust-
worthiness by correlating data from different modal-
ities.  For example, during disaster scenarios, physical
sensing may be prone to vagaries of the environ-
ment, whereas citizen sensing can be prone to
rumors and inaccuracies. So combining their com-
plementary strengths can enable robust situational
awareness. 

Detection of anomalous (machine or human) sen-
sor data is fundamental to determining the trustwor-
thiness of a sensor. For densely populated sensor net-
works, one can expect spatiotemporal coherence
among sensor data generated by sensors in spa-
tiotemporal proximity. Similarly, domain models can
be used to correlate sensor data from heterogeneous
sensors. However, anomaly detection in both social
and sensor data is complicated as it may also repre-
sent an abnormal situation. (As an aside, trending
topic abuses are common during disasters and politi-
cal events/upheavals as illustrated by the infamous
Kenneth Cole tweet [Anantharam, Thirunarayan, and
Sheth 2012].) It may not be possible to distinguish an
abnormal situation from a sensor fault or plausible
rumor purely on the basis of observational data (for
example, freezing temperature in April versus stuck-
at-zero fault). This may require exploring robust
domain models for PCSS that can distinguish data
reported by compromised sensors (respectively, mali-
cious agents) from legitimate data signaling abnormal
situation (respectively, unlikely event) or erroneous
data from faulty sensors (uninformed public). 

Reputation-based approaches can be adapted to
deal with data from multiple sources (including
human-in-the-loop) and over time, to compute the
trustworthiness of aggregated data and their sources.
Provenance tracking and representation can be the
basis for gleaning trustworthiness.19, 20 We have
developed an upper-level trust ontology and a com-
parative analysis of several approaches to binary and
multivalued trust and analyzed their robustness to
various attacks (Thirunarayan et al. 2013). Specifical-
ly, we have used a Bayesian foundation in the form of
beta distribution to formalize binary trust and Dirich-
let distribution to formalize multivalued trust. For
example, for the binary case, the dynamic trustwor-
thiness of an agent (for example, sensor, vendor) can
be characterized using Beta-PDF Beta(a, b), whose
parameters can be gleaned from the total number of

correct observations r = (a – 1) and the total number
of erroneous observations s = (b – 1) so far. The over-
all trustworthiness (reputation) can then be equated
to its mean: a / (a + b). We have also analyzed the
pros and the cons of several approaches to comput-
ing direct trust and (inferred) indirect trust. The indi-
rect trust is computed using trust propagation rules
for sequential chaining of edges and parallel aggre-
gation of paths. We have also developed algorithms
for computing the K-level trust metric based on
Dirichlet distribution incorporating temporal decay,
to make it robust with respect to various well-known
attacks in trust networks (Thirunarayan et al. 2013).
Unfortunately, there is neither a universal notion of
trust that is applicable to all domains nor a clear
explication of its semantics or computation in many
situations (Josang 2009, Thirunarayan 2012). 

Trust issues are crucial to big data analytics where
we aggregate and integrate data from multiple
sources, and in different contexts. The Holy Grail of
trust research is to develop expressive trust frame-
works that have both declarative/axiomatic and
computational specifications. Furthermore, we need
to devise methodologies for instantiating them for
practical use by justifying automatic trust inference
in terms of application-oriented semantics of trust
(that is, vulnerabilities and risk tolerance). 

Deriving Value: Evolving Background
Knowledge, Actionable Intelligence, and
Decision Making
The aforementioned research should yield new back-
ground knowledge applicable to big data instances
and that can benefit end users’ decision making
(Sheth 2013). For specificity, here are some concrete
examples of applications affected by our line of
research. 

Our first example is the health and well-being of
patients afflicted with chronic conditions that can be
improved by empowering patients to be more proac-
tive and participatory in their own health care.
Development of such mobile applications requires
(1) building background knowledge/ontology
involving disorders, causative triggers, symptoms,
and medications; and (2) using environmental and
on-body sensors, background knowledge, and
patient health history to prescribe a regimen to avoid
triggers, improve resistance, and treat symptoms. 

As a second example, consider the acquisition of
new background knowledge to improve coverage by
exploiting EMR data (for example, in the cardiology
context). Specifically, our research elicits missing
knowledge by leveraging EMR data to hypothesize
plausible relationships, gleaned through statistical
correlations. These can be validated by domain
experts with reduced manual effort (Perera et al.
2014). 

As a third example, our research leveraged massive
amounts of user-generated content to build high-

Articles

SPRING 2015   51



quality prediction models. For example, Twitter and
author-provided emotion hashtags can be harnessed
for sentiment/emotion identification in tweets
(Wang et al. 2012).

The observations and interactions in PCSS are
characterized by three attributes. They are incom-
plete due to partial observation from the real world.
There is uncertainty due to inherent randomness
involved in the sensing process (noise in machine
sensors and bias in citizen sensors). It is dynamic
because of the ever changing and nondeterministic
conditions of the physical world. Graphical models
can be used to deal with incompleteness, uncertain-
ty, and dynamism in many diverse domains. Unfor-
tunately, extracting structure is very challenging due
to data sparseness and difficulty in detecting causal
links (Anantharam, Thirunarayan, and Sheth 2013).
Declarative domain knowledge can obviate the need
to learn everything from data. In addition, correla-
tions derivable from data can be further consolidat-
ed if the declarative knowledge base provides evi-
dence for it. Similarly to the traffic use case discussed
before, we believe that leveraging domain ontologies
and data sets published on the LOD cloud and inte-
grating it with data-driven correlations will increase
the fidelity of graphical models, improving their pre-
dictive and analytical power. 

Conclusions
We have outlined how semantic models and tech-
nologies can be, and in many cases are being, used to
address various problems associated with big data.
We overcome volume by enabling abstraction to
achieve semantic scalability for decision making. We
defined two operations — explanation and discrimi-
nation — that underlie the semantics of machine
perception, and showed how they can be imple-
mented efficiently on resourced-constrained devices.
Variety challenges can be overcome using a continu-
um of lightweight semantics to achieve semantic
integration and interoperability. We benefitted from
combining statistical as well as declarative knowl-
edge, to improve coverage, reliability, and semantic
scalability. We employed dynamically constructed
domain models for semantic filtering to deal with
velocity. To improve veracity, we have used a
Bayesian foundation to deal with homogeneous sen-
sor networks, and semantics for cross-checking mul-
timodal data against constraints. We achieved value
by enriching background knowledge to make the
knowledge comprehensive for better decision mak-
ing. Given Kno.e.sis’s empirically driven multidisci-
plinary research, we seek to harness semantics for big
data that can affect a wide variety of application areas
including medicine, health and well-being, disaster
and crisis management, environment and weather,
internet of things, sustainability and smart city infra-
structure.
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Please Join Us for the Ninth International 
AAAI Conference on Weblogs and Social Media

26–29 May 2015
Oxford, United Kingdom

The Ninth International AAAI Conference on Weblogs and Social Media (ICWSM) will be
held at Oxford University in Oxford, United Kingdom from May 26–29. This interdiscipli-
nary conference is a forum for researchers in computer science and social science to come

together to share knowledge, discuss ideas, exchange information, and learn about cutting-
edge research in diverse fields with the common theme of online social media. This overall
theme includes research in new perspectives in social theories, as well as computational algo-
rithms for analyzing social media. ICWSM is a singularly fitting venue for research that blends
social science and computational approaches to answer important and challenging questions
about human social behavior through social media while advancing computational tools for
vast and unstructured data.

ICWSM-15 will include a lively program of technical talks and posters, invited presentations,
and keynote talks from prominent social scientists and technologists. The ICWSM Workshop
program will return in 2016 and will be held on the first day of the conference, May 26.

Please see individual websites for workshop submission deadlines. Registration information
will be available at the ICWSM-15 website in March. The early registration deadline is April 10,
and the late registration deadline is May 1. For full details about the conference program, please
visit the ICWSM-15 website (icwsm.org) or write to icwsm15@aaai.org.

I CWSM


